共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Oval cells constitute a heterogeneous population of proliferating progenitors found in rat livers following carcinogenic treatment (2-acetylaminofluorene and 70% hepatectomy). The aim of this study was to investigate the cellular pattern of various differentiation and cell type markers in this model of liver regeneration. Immunophenotypic characterisation revealed at least two subtypes emerging from the portal field. First, a population of oval cells formed duct-like structures and expressed bile duct (CD49f) as well as hepatocytic markers (α-foetoprotein, CD26). Second, a population of non-ductular oval cells was detected between and distally from the ductules expressing the neural marker nestin and the haematopoietic marker Thy1. Following oval cell isolation, a subset of the nestin-positive cells was shown to co-express hepatocytic and epithelial markers (albumin, CD26, pancytokeratin) and could be clearly distinguished from anti-desmin reactive hepatic stellate cells. The gene expression profiles (RT-PCR) of isolated oval cells and oval cell liver tissue were found to be similar to foetal liver (ED14). The present results suggest that the two oval cell populations are organised in a zonal hierarchy with a marker gradient from the inner (displaying hepatocytic and biliary markers) to the outer zone (showing hepatocytic and extrahepatic progenitor markers) of the proliferating progeny clusters. 相似文献
3.
Hepatic oval 'stem' cell in liver regeneration 总被引:30,自引:0,他引:30
Hepatic oval cell activation, proliferation, and differentiation has been observed under certain physiological conditions, mainly when the proliferation of existing hepatocytes has been inhibited followed by severe hepatic injury. Hepatic oval cells display a distinct phenotype and have been shown to be a bipotential progenitor of two types of epithelial cells found in the liver, hepatocytes and bile ductular cells. Bone marrow stem cells have recently been shown to be a potential source of the hepatic oval cells and that reconstitution of an injured liver from a purified stem cell population is possible. The focus of this review is on the studies involving the activation, proliferation, and differentiation of these hepatic oval cells and the role that they play in regeneration of the damaged liver. In order to present the potentiality of the hepatic oval cell, an experimental model that involves the inhibition of normal hepatic growth and division as well as severe hepatic injury via chemical or surgical means has been employed. In this model, an as yet undetermined signal or perhaps the lack of regenerative capability in the hepatocytes activates the hepatic oval cell compartment. However, other than understanding a potential origin of these cells and some of the markers that characterize them, it still remains unclear as to how these cells migrate ('home') into the damaged areas and how they begin their differentiation into mature and functioning hepatic cells. 相似文献
4.
Strick-Marchand H Masse GX Weiss MC Di Santo JP 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(4):2764-2771
In case of hepatic damage, the liver uses a unique regeneration mechanism through proliferation of hepatocytes. If this process is inhibited, bipotent oval stem cells proliferate and differentiate to hepatocytes and bile ducts, thus restoring liver mass. Although oval cell accumulation in the liver is often associated with inflammatory processes, the role of lymphocytes in oval cell-mediated hepatic regeneration is poorly understood. We treated wild-type and immunodeficient mice with an oval cell-inducing diet: in the absence of T cells (CD3epsilon(-/-) and Rag2(-/-)) there were fewer oval cells, whereas in alymphoid mice (Rag2(-/-)gamma(c)(-/-)) a strongly reduced oval cell response and higher mortality, due to liver failure, was observed. Adoptive transfer of T cells into alymphoid mice protected them from liver failure, but was insufficient to restore the oval cell response. Treatment of Rag2(-/-) mice with an NK cell-depleting Ab resulted in a significantly diminished oval cell response. These genetic experiments point to a major role for NK and T cells in oval cell expansion. In wild-type mice, oval cell proliferation is accompanied by an intrahepatic inflammatory response, characterized by the recruitment of Kupffer, NK, NKT, and T cells. Under these conditions, lymphocytes produce T(H)1 proinflammatory cytokines (IFN-gamma and TNF-alpha) that are mitogenic for oval cells. Our data suggest that T and NK lymphocytes stimulate oval cell expansion by local cytokine secretion. This beneficial cross-talk between the immune system and liver stem cells operates under noninfectious conditions and could promote tissue regeneration following acute liver damage. 相似文献
5.
The liver has the unique capacity to regulate its growth and mass. In rodents and humans, it grows rapidly after resection of more than 50% of its mass. This growth process, as well as that following acute chemical injury is known as liver regeneration, although growth takes place by compensatory hyperplasia rather than true regeneration. In addition to hepatocytes and non-parenchymal cells, the liver contains intra-hepatic "stem" cells which can generate a transit compartment of precursors named oval cells. Liver regeneration after partial hepatectomy does not involve intra or extra-hepatic (hemopoietic) stem cells but depends on the proliferation of hepatocytes. Transplantation and repopulation experiments have demonstrated that hepatocytes, which are highly differentiated and long-lived cells, have a remarkable capacity for multiple rounds of replication. In this article, we review some aspects of the regulation of hepatocyte proliferation as well as the interrelationships between hepatocytes and oval cells in different liver growth processes. We conclude that in the liver, normally quiescent differentiated cells replicate rapidly after tissue resection, while intra-hepatic precursor cells (oval cells) proliferate and generate lineage only in situations in which hepatocyte proliferation is blocked or delayed. Although bone marrow stem cells can generate oval cells and hepatocytes, transdifferentiation is very rare and inefficient. 相似文献
6.
Sepharose CL-6B column chromatography of crude extracts from the slices of regenerating rat livers after partial hepatectomy and sham-operated controls labeled with [35S]sulfuric acid revealed an enhancement of [35S]sulfate incorporation into proteoglycan fractions during regeneration. The 35S-labeled proteoglycans contained heparan sulfate (more than 80% of the total) and chondroitin/dermatan sulfate. The 35S-incorporation into both glycosaminoglycans increased to maxima 3-5 days after partial hepatectomy and decreased thereafter toward the respective control levels. When [35S]sulfuric acid was replaced by [3H]glucosamine, similar results were obtained. These results suggest that the maximal stimulation of proteoglycan synthesis in regenerating rat liver follows the maximal mitosis of hepatic cells 1-2 days after partial hepatectomy. The 35S-labeled proteoglycans from regenerating liver 3 days after partial hepatectomy and control were analyzed further. They were similar in chromatographic behavior on a gel filtration or an anion-exchange column and in glycosaminoglycan composition. Their glycosaminoglycans were indistinguishable in electrophoretic mobility. However, these proteoglycans were slightly but significantly different in their affinity to octyl-Sepharose and in the molecular-weight distribution of their glycosaminoglycans. 相似文献
7.
细胞外基质具有维持细胞极性、调节细胞粘附、增殖、组织器官形态、发生、分化等功能。为了进一步在基因转录水平了解细胞外基质在大鼠肝再生中变化和作用, 用搜集网站资料和查阅相关论文等方法获得细胞外基质基因, 用Rat Genome 230 2.0芯片检测它们在大鼠再生肝中表达情况, 用真、假手术比较方法确定肝再生相关基因。初步证实上述97个基因与肝再生相关。其中, 肝再生启动(部分肝切除(parital hepatectomy, PH)后0.5~4 h)、G0/G1过渡(PH后4~6 h)、细胞增殖(PH后6~66 h)、细胞分化和组织结构功能重建(PH后72~168 h)等4个阶段起始表达的基因数为49、19、73、5, 基因总表达的次数为84、51、369、144, 表明相关基因主要在肝再生启动阶段起始表达, 在不同阶段发挥作用。它们表达的相似性分为均上调、上调占优势、均下调、下调占优势、上调和下调相近等5类, 涉及38、21、21、10和7个基因, 共上调411次, 下调186次, 分为24种表达模式, 表明肝再生中细胞生理生化活动具有阶段性、多样性和复杂性。根据细胞外基质相关基因在肝再生中表达变化推测, 肝再生前期纤粘连蛋白形成相关基因表达增强, 肝再生中期胶原形成相关基因表达增强。 相似文献
8.
9.
X R Bustelo A Otero J Gómez-Márquez M Freire 《The Journal of biological chemistry》1991,266(3):1443-1447
Prothymosin alpha (ProT alpha) is a widely distributed acidic protein whose function has been related to cell proliferation. We have analyzed the expression of the rat ProT alpha gene in several proliferative systems: concanavalin A (ConA)/interleukin-2-stimulated thymocytes, ConA-stimulated splenic T-lymphocytes, and hepatocytes proliferating during liver regeneration. In these systems, ProT alpha mRNA was detected in all stages of the cell cycle, with maximal increments (2-4-fold) at the beginning of the S phase. By contrast, the mRNAs for proliferating cell nuclear antigen/cyclin and histone H3, two cell-cycle-regulated proteins, were hardly detected in resting cells but increased notably at the G1/S boundary and in the S phase, respectively. Treatment of T-cells with the calcium ionophore A23187 increased ProT alpha mRNA levels 2.5-fold, whereas phorbol 12-myristate 13-acetate, a protein kinase C activator, had no effect on ProT alpha gene expression. Incubation of ConA-stimulated T-cells with hydroxyurea, a DNA synthesis inhibitor, did not decrease the levels of ProT alpha mRNA, indicating that its expression is independent of DNA synthesis. These findings suggest that ProT alpha is required throughout all the stages of the cell cycle, resembling a constitutively expressed gene rather than one strictly involved in cell proliferation. 相似文献
10.
The changes in the specific radioactivities of the pool of total acid-soluble uridine nucleotides and of uridine and cytidine components of total cellular and nuclear RNA were monitored in regenerating rat liver for 12 days after partial hepatectomy. Evidence is presented for the re-utilization of pyrimidine nucleotides derived from cytoplasmic RNA degradation for the synthesis of new RNA. The extent of recycling was assessed and the true rate of rRNA turnover determined more accurately. The reutilization of the uridine components of RNA was 7.0%/day during the proliferative and 3.2%/day during the post-proliferative phase, whereas that of the cytidine nucleotides was more pronounced (9.6%/day and 18.1%/day respectively). The results reveal the existence of partial compartmentalization of pyrimidine ribonucleoside triphosphate pools in the nucleus and cytoplasm of rat liver cells. 相似文献
11.
12.
In this study, 55 of the organic acid metabolism-involved genes were primarily confirmed to be associated with liver regeneration
(LR) by bioinformatics and gene expression profiling analysis. Number of the initially and totally expressed genes occurring
in initiation phase of LR, G0/G1, cell proliferation, cell differentiation and liver tissue structure-function reconstruction were 21, 5, 33, 1 and 40, 20,
174, 44, respectively, illustrating that genes were initially expressed mainly in initiation stage, and worked in different
phases. 151 times up-regulation and 114 times down-regulation as well as 14 types of expression patterns showed the diversification
and complication of genes expression changes. It is inferred from the above gene expression changes and patterns that acetate
biosynthesis enhanced at forepart, propionate biosynthesis at forepart, prophase and early metaphase, pyruvate biosynthesis
at forepart, metaphase and anaphase, succinate biosynthesis at forepart and anaphase; malate biosynthesis in metaphase and
N-acetylneuraminate biosynthesis at 36, 66 and 96 h. Whereas, carnitine biosynthsis attenuates at forepart and prophase, enhancement
at middle metaphase; isocitrate in the forepart, quinolinate at forepart and early metaphase, creatine at early metaphase
and fumarate at anaphase perform the restrained biosynthesis, respectively; catabolisms of propionate and pyruvate were depressed
in metaphase. 相似文献
13.
At early stages after partial hepatectomy (17 hours after the operation) binuclear cells become involved in proliferation in much lesser numbers, and 37 and 53 hours after the operation--in much greater numbers relative to their part in the population. New formation of binuclear cells (the presence of labeled binuclear cells 20 hours after the thymidine H3 administration) was the most intensive at the early regeneration stages (16--36 hours after the operation), when about 20% of mitoses are acytokinetic and lead to the formation of binuclear cells. At later periods only 8% of mitoses result in formation of binuclear cells. 相似文献
14.
Alterations in fucosyl oligosaccharides of glycoproteins during rat liver regeneration. 总被引:1,自引:1,他引:1 下载免费PDF全文
[3H]Fucose-labelled glycopeptides in the slices of liver 24h after partial hepatectomy were fractionated on Sephadex G-50. Glycopeptides from regenerating liver contained a higher proportion of lower-Mr components than did controls. Regenerating liver contained a higher proportion of glycopeptides that were bound to concanavalin A-Sepharose and were subsequently eluted with 20mM-methyl alpha-D-glucopyranoside than did controls. Concanavalin A-bound glycopeptides from each source were entirely bound to a lentil lectin-Sepharose column. Both the concanavalin A-bound and -unbound fractions from regenerating liver were indistinguishable from the respective controls by Bio-Gel P6 column chromatography and neuraminidase digestion. These results show that fucosyl glycopeptides from regenerating liver contain a higher proportion of biantennary species with core fucose residues than do controls. Glycopeptides from regenerating livers 12h, 72h and 144h after partial hepatectomy were also examined; however, the difference was not significant. These observations suggest that the alterations in fucosyl glycopeptides may be related to rapid growth of hepatocytes 24h after partial hepatectomy. No significant difference was found in either [3H]mannose- or [3H]fucose-labelled glycoproteins from regenerating liver and from controls by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, suggesting that the alteration in glycopeptides should depend on some differences in the late stage of oligosaccharide processing. 相似文献
15.
G?ran Fex 《The Biochemical journal》1970,119(4):743-747
The concentration and composition of phospholipids and mitotic activity in regenerating rat liver were studied. (1) The total amount of liver phospholipid increased approximately linearly during 48h after operation but without change in the relative concentrations of individual phospholipids. (2) The appearance of mitoses 30h after operation was accompanied by an increased incorporation of (32)P into the liver phospholipids. (3) The regenerating livers incorporated a higher percentage of the label into the phosphatidylserine+phosphatidylinositol fraction than those of control rats. The percentage of the label incorporated into phosphatidylethanolamine in these livers increased but decreased in the phosphatidylcholine. 相似文献
16.
M L Tomassoni E Albi M V Magni 《Biochemistry and molecular biology international》1999,47(6):1049-1059
We have previously shown that the nuclear membrane fluidity is affected by lipid composition changes and that is very high, particularly in the hydrophobic core. The aim of this work is to study the modifications of nuclear membrane fluidity in relation to the cell cycle. Since compensatory hepatic growth is an informative and well characterised model for natural cell proliferation, the nuclear membrane fluidity, detected by two fluorescent probes, was studied at various regenerating times, ranging from 0 to 30 hours after partial hepatectomy. At 18 hours after partial hepatectomy the nuclear membrane fluidity increased and at 30 hours the higher values of hydrophobic core fluidity were observed. The behaviour of fluidity was related to the nuclear membrane neutral-sphingomyelinase activity and, then, to the content of sphingomyelin. Therefore, the significant changes of the nuclear membrane fluidity and of the neutral-sphingomyelinase activity found during rat liver regeneration suggested a their likely role in signal transduction pathways implying cell regeneration. 相似文献
17.
为探讨自噬对大鼠肝再生中树突状细胞(Dendritic cells, DCs)的调节作用,文章通过Percoll 密度梯度离心结合免疫磁珠分选分离大鼠DCs,Rat Genome 230 2.0芯片检测大鼠肝再生中自噬相关基因表达变化,利用IPA等软件分析自噬在DCs中的生理活动。结果表明,LC3、BECN1、ATG7和SQSTM1等关键基因在部分肝切除后不同恢复时间段有明显表达变化;芯片中对应的自噬相关基因为593个,其中210个基因发生了有意义的变化。比较分析自噬生理活动情况,发现自噬在再生早期和晚期阶段增强,增殖期减弱。与自噬相关的生理活动主要有RNA表达、RNA转录细胞分化和增殖,其中涉及的信号通路主要有PPARα/RXRα激活、急性期反应、TREM1 信号通路、IL-6 信号通路、IL-8 信号通路和IL-1 信号通路等,它们在肝再生阶段发生了不同程度的上调或下调。Cluster 分析还发现,P53和AMPK信号参与调控DCs的自噬活动,在肝再生早期主要是AMPK信号,在肝再生末期P53和AMPK信号共同参与自噬的调节。以上研究结果说明DCs自噬可能在肝再生早期激活细胞免疫反应和后期清除DCs等方面发挥着重要作用。 相似文献
18.
Changes in polynucleotide ligase during rat liver regeneration 总被引:2,自引:0,他引:2
K Tsukada 《Biochemical and biophysical research communications》1974,57(3):758-762
The specific activity of polynucleotide ligase in rat liver seems to begin to rise at 16 hours after partial hepatectomy (removal of 70% of the liver). The increases reach their maxima about 24 hours after operation, rising to at least 4 to 5 fold normal levels. Cycloheximide caused a decline in the increased activity of polynucleotide ligase. Since the specific activity of the ligase of normal rats is very little affected by cycloheximide, the possibility is considered that the newly formed enzyme is different from the one normally present in liver. 相似文献
19.
20.
Rabindranath Ray Chinmay K. Panda Bimal K. Chakraborty Sheela Mukherji Kanakendu Chaudhury Jayashree Roychoudhury 《Molecular and cellular biochemistry》1994,131(1):67-73
Partial hepatectomy (P.H.) induces a partially synchronized growth response of liver under normal regulation of growth. In this phase changes in cellular morphology, radial distribution pattern of cells and other biological as well as major biochemical changes are well documented [24]. Here, we have shown that the cellular content of UsnRNAs altered during this proliferative phase as well. The level of spliceosomal UsnRNAs (U1, U2, U4–U6) gradually decreased by 30–50% upto 48 hrs of P.H. followed by gradual increase to reach the normal level within one month of P.H. The U3 snRNA level on the other hand, was nearly equal to that in normal liver at 48 hrs of P.H. but in 24 and 72 hrs of P.H. its level was high (4 fold) in contrast to that in other UsnRNAs. Thus, it is clear from our data that the level of all the six UsnRNAs decreased during 48 hrs of P.H. compared to that after first 24 hrs. This has been correlated in the kinetics of UsnRNAs' synthesis (in terms of labelling) in isolated hepatocytes, where the rate of labelling of all the six UsnRNAs increased 20–30% in 24 hrs regenerating hepatocytes (R.H.) followed by sharp decrease by 30–50% within next 24 hrs, compared to that in the normal hepatocytes. But from 72 hrs onwards in R.H. the rate of labelling of all the six UsnRNAs again increased by 30–50% (compared to that in normal hepatocytes) followed by decrease of their labelling-rate to reach the normal level in R.H. within one month of P.H. Thus, it may be concluded that the changes in UsnRNAs' level during the proliferative phase of liver regeneration may be either due to the alteration in the rate of synthesis (in terms of labelling) or along with it differential turn over rate; this phenomenon may have some consequences with the regenerative process of liver.This paper was published in Molecular and Cellular Biochemistry131:67–73, 1994. Kluwer Academic Publishers regret the publication of the only partly corrected version. 相似文献