首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A mammalian family of lipid hydrolases, designated “patatin-like phospholipase domain containing (PNPLA)” recently has attracted attention. NTE-related esterase (NRE) as a member of PNPLA is an insulin-regulated lysophospholipase with homology to neuropathy target esterase (NTE). Mouse NRE (mNRE) has a predicted amino-terminal transmembrane region (TM), a putative regulatory (R) domain, and a hydrophobic catalytic (C) domain. In the current study, we described the expression of green fluorescent protein (GFP)-tagged constructs of mNRE and mutant proteins lacking the specific protein domains. Esterase assays indicated that neither the TM nor R-domain was essential for mNRE esterase activity, but the TM significantly contributed to its activity. Subcellular distribution showed that mNRE was anchored in ER via its TM domain and that its C-domain was associated with ER. Furthermore, experiments involving proteinase treatment revealed that most of mNRE molecule was exposed on the cytoplasmic face of ER membranes. Collectively, our results for the first time revealed the protein domains, catalytic activity, and subcellular location of mNRE and a simplified model for mNRE was proposed.  相似文献   

3.
4.
The Schizosaccharomyces pombe gene, fkp39(+), encoding a homolog of FKBP(FK506 binding protein)-type peptidyl prolyl cis-trans isomerase (PPIase), was isolated and the primary structure was determined. This gene product (SpFkbp39p) showed PPIase enzymatic activity in a chymotrypsin-dependent enzyme assay involving recombinant SpFkbp39p. Comparison of the primary structures of the catalytic domains of FKBPs, including SpFkbp39p, revealed that FKBPs could be classified into four groups. This categorization corresponding to the known subcellular localization of the FKBPs, makes the prediction of the subcellular localization of FKBPs based on their primary structures feasible. SpFkbp39p was considered to be a member of the nuclear-type FKBP group from this relationship between primary structure and subcellular localization. An immunofluorescence assay against HA-epitope-tagged SpFkbp39p revealed that SpFkbp39p is localized to the nucleus, as predicted. Residues conserved in a "group-specific" manner in the catalytic domain were mapped to their corresponding three-dimensional positions; these "group-specific" residues were located in close proximity in distinct regions mostly on the protein surface, which implies the presence of "group-specific" regulatory functional regions. We also found that nuclear-type FKBPs, including SpFkbp39p, have two highly conserved domains other than catalytic ones, with further basic and acidic charged regions, especially in the case of nuclear-type FKBPs. This is the first report indicating that there is a rule for the relationship between the subcellular localization and structure of the catalytic domain of a FKBP.  相似文献   

5.
6.
7.
8.
Neuropathy target esterase (NTE), the human homologue of a protein required for brain development in Drosophila, has a predicted amino-terminal transmembrane helix (TM), a putative regulatory (R) domain, and a hydrophobic catalytic (C) domain. Here we describe the expression, in COS cells, of green fluorescent protein-tagged constructs of NTE and mutant proteins lacking the TM or the R- or C-domains. Esterase assays and Western blots of particulate and soluble fractions indicated that neither the TM nor R-domain is essential for NTE catalytic activity but that this activity requires membrane association to which the TM, R-, and C-domains all contribute. Experiments involving proteinase treatment revealed that most of the NTE molecule is exposed on the cytoplasmic face of membranes. In cells expressing a moderate level of NTE and all cells expressing DeltaC-NTE, fluorescence was distributed in an endoplasmic reticulum (ER)-like pattern. Cells expressing high levels of NTE showed aberrant distribution of ER marker proteins and accumulation of NTE on the cytoplasmic surface of ER-derived tubuloreticular aggregates. Deformation of the ER was also seen in cells expressing DeltaR-NTE or enzymatically inactive S966A-NTE but not DeltaTM-NTE. The data suggest that NTE is anchored in the ER via its TM, that its R- and C-domains also interact with the cytoplasmic face of the ER, and that overexpression of NTE causes ER aggregation via intermolecular association of its C-domains.  相似文献   

9.
10.
Within articular cartilage, the chondron microenvironment will influence chondrocyte behaviour and response to loading. Chondrons were extracted from intact cartilage using either mechanical homogenisation (MC) or enzymatic digestion (EC) and cell and matrix morphology in unstrained and compressed agarose constructs was examined. Isolated chondrocytes (IC) were used for comparison. Immunolocalisation of type VI collagen and keratan sulphate revealed differences in the structure of the pericellular microenvironment such that MC most closely resembled chondrons in situ. The unstrained cell diameters of IC and EC were larger than MC at day 1 and increased significantly over a 7 day culture period. In contrast, cell diameters for MC remained constant. Compression of constructs at day 1 resulted in cell deformation for IC and EC but not MC. The two chondron extraction methods yielded chondrons of differing matrix morphology and associated differences in cell size and cellular response to load. The results indicate that the pericellular microenvironment of MC initially possessed a greater mechanical integrity than that of EC. Although these differences may be reduced with time in culture, characterisation of mechanically isolated chondrons suggests that the stiffness of the chondrons in situ may be greater than previous estimates.  相似文献   

11.
Matrilins constitute a family of four oligomeric extracellular proteins that are involved in the development and homeostasis of cartilage and bone. To reveal their homo- and heterotypic oligomerization propensities, we analyzed the four human matrilin coiled-coil domains by biochemical and biophysical methods. These studies not only confirmed the homo- and heterotypic oligomerization states reported for the full-length proteins but revealed seven novel matrilin isoforms. Specific heterotrimeric interactions of variable chain stoichiometries were observed between matrilin-1 and matrilin-2, matrilin-1 and matrilin-4, and matrilin-2 and matrilin-4. In addition, matrilin-1 formed two different specific heterotetramers with matrilin-3. Interestingly, a distinct heterotrimer consisting of three different chains was formed between matrilin-1, matrilin-2, and matrilin-4. No interactions, however, were observed between matrilin-2 and matrilin-3 or between matrilin-3 and matrilin-4. Both homo- and heterotypic oligomers folded into parallel disulfide-linked structures, although coiled-coil formation was not dependent on disulfide bridge formation. Our results indicate that the heterotypic preferences seen for the matrilin coiled-coil domains are the result of the packing of the hydrophobic core rather than ionic interactions. Mass spectrometry revealed that the concentrations of the individual chains statistically determined the stoichiometry of the heteromers, suggesting that formation of the different matrillin chain combinations is controlled by expression levels.  相似文献   

12.
There is little information on the molecular events that control the subcellular distribution of protein kinase C during cardiac cell differentiation. We examined protein kinase C activity and the subcellular distribution of representatives of the "classical," "novel," and "atypical" protein kinase C's in P19 murine teratoma cells induced to undergo differentiation into cardiac myocytes by the addition of dimethylsulfoxide to the medium (Grepin et al., Development 124, 2387-2395, 1997). Differentiation was assessed by the presence of striated myosin, a morphological marker for cardiac cells. Addition of dimethyl sulfoxide to the medium resulted in the appearance of striated myosin by 10 days postincubation. Immunolocalization and Western blot studies revealed that a significant proportion of protein kinase Calpha, -epsilon, and -zeta were associated with the particulate fraction in P19 cells prior to differentiation. Differentiation into cardiac cells resulted in a translocation of protein kinase C activity from the particulate fraction to cytosol and localization of most of protein kinase Calpha, -epsilon, and -zeta to the cytoplasmic compartment. The total cellular protein kinase C activity was unaltered during differentiation. The translocation of protein kinase C activity during differentiation of P19 cells into cardiac myocytes was associated with a decrease in the levels of cellular 1, 2-diacyl-sn-glycerol. The cellular levels of phosphatidylserine and phosphatidylinositol did not change during differentiation. Addition of 1,2-dioctanoyl-sn-glycerol, a cell-permeant 1, 2-diacyl-sn-glycerol analog, reversed the differentiation-induced switch in the relative distribution of protein kinase C activity and dramatically increased the association of protein kinase Calpha with the particulate fraction. Addition of 1,2-dioctanoyl-sn-glycerol did not reverse the pattern of distribution for protein kinase Cepsilon or -zeta. The results indicate that protein kinase C activity and protein kinase Calpha, -epsilon and -zeta isoforms are redistributed from the particulate to the cytosolic fraction during differentiation of P19 cells into cardiomyocytes. The mechanism for the redistribution of protein kinase Calpha may be related to the reduction in the cellular 1,2-diacyl-sn-glycerol levels that accompany differentiation.  相似文献   

13.
The secretory lympho-epithelial Kazal-type-inhibitor (LEKTI) is synthesized as a pro-LEKTI protein containing an N-terminal signal peptide and 15 potentially inhibitory domains. This inhibitor is of special interest because of its pathophysiological importance for the severe congenital disease Netherton syndrome. We showed that LEKTI is a potent inhibitor of a family of serine proteinases involved in extracellular matrix remodeling and its expression is downregulated in head and neck squamous cell carcinomas. To assess the role of C-terminal domains and N-terminal signal peptide in LEKTI secretion, we constructed deletion mutants of LEKTI, expressed them in HEK 293T cells, and analyzed their secretion behavior, stability, subcellular distribution, and proteinase inhibitory function. Pro-LEKTI is processed and secreted into the medium. On the basis of partial N-terminal sequencing and immunoblotting, the cleavage products are ordered from amino- to carboxy-terminal as follows: 37, 40, and 60kDa. Inhibitors of furin lead to enhanced secretion of unprocessed LEKTI, suggesting that processing was not required for secretion. Deletion of the N-terminal signal peptide of pro-LEKTI caused altered distribution of LEKTI from endoplasmic reticulum (ER) to cytoplasm and markedly reduced its stability, consistent with its failure to become secreted into the medium. Interestingly, when we deleted the C-terminal domains, stable partial LEKTI (LD-1-6) accumulated and still retained its association with ER but was not secreted. Recombinant LD-1-6 specifically inhibited the trypsin activity. We conclude that N-terminal signal peptide is required for LEKTI import into ER and elements present in C-terminal domains may have a role in regulating LEKTI secretion.  相似文献   

14.
Endothelin-converting enzyme (ECE) is a membrane metalloprotease that generates endothelin from its direct precursor big endothelin. Four isoforms of ECE-1 are produced from a single gene through the use of alternate promoters. These isoforms share the same extracellular catalytic domain and contain unique cytosolic tails, which results in their specific subcellular targeting. We investigated the distribution of ECE-1 isoforms in transfected AtT-20 neuroendocrine cells. Whereas ECE-1a and 1c were present at the plasma membrane, ECE-1b and ECE-1d were retained inside the cells. We found that both intracellular isoforms were concentrated in the endosomal system: ECE-1d in recycling endosomes, and ECE-1b in late endosomes/multivesicular bodies. Leucine-based motifs were involved in the intracellular retention of these isoforms, and the targeting of ECE-1b to the degradation pathway required an additional signal in the N terminus. The concentration of ECE-1 isoforms in the endosomal system suggested new functions for these enzymes. Potential novel functions include redistribution of other isoforms through direct interaction. We have showed that ECE-1 isoforms could heterodimerize, and that in such heterodimers the ECE-1b targeting signal was dominant. Interaction of a plasma membrane isoform with ECE-1b resulted in its intracellular localization and decreased its extracellular activity. These data demonstrated that the targeting signals specific for ECE-1b constitute a regulatory domain per se that could modulate the localization and the activity of other isoforms.  相似文献   

15.
Exonuclease VII (ExoVII) is a bacterial nuclease involved in DNA repair and recombination that hydrolyses single-stranded DNA. ExoVII is composed of two subunits: large XseA and small XseB. Thus far, little was known about the molecular structure of ExoVII, the interactions between XseA and XseB, the architecture of the nuclease active site or its mechanism of action. We used bioinformatics methods to predict the structure of XseA, which revealed four domains: an N-terminal OB-fold domain, a middle putatively catalytic domain, a coiled-coil domain and a short C-terminal segment. By series of deletion and site-directed mutagenesis experiments on XseA from Escherichia coli, we determined that the OB-fold domain is responsible for DNA binding, the coiled-coil domain is involved in binding multiple copies of the XseB subunit and residues D155, R205, H238 and D241 of the middle domain are important for the catalytic activity but not for DNA binding. Altogether, we propose a model of sequence-structure-function relationships in ExoVII.  相似文献   

16.
17.
XRIP alpha was identified as an adapter protein involved in RAP nuclear import. Several homologs were reported in mammal EST analysis, but the expression pattern and genomic organization of hRIP isoforms were not clarified yet. We isolated nine isoforms of hRIP from a premade human fetal brain library. hRIP alpha is the longest isoform with 219 residues, containing a N-terminal arginine-rich basic region, followed by an acidic region and two C-terminal Zn finger-like structures. hRIP beta deletes one Zn-finger-like structure. Three hRIP alpha isoforms and four hRIP sigma isoforms express truncated proteins due to frame shift. hRIP gamma isoforms lost the C-terminal Zn-finger-like structure. hRIP delta isoforms only contain the N-terminal arginine-rich basic region and the core sequence of the acidic region. The genomic organization of hRIP was identified by bioinformatic analysis. hRIP, containing seven exons, is located at human chromosome 17p13. hRIP was expressed in all 16 detected human tissues with a similar pattern. All EGFP-hRIP fusion proteins were located at the nucleus in the HEK293 cell. The two-polar molecular structure of hRIP might be involved in the basic cell function, and plays a role in the alternative nuclear ingress.  相似文献   

18.
U4 small nuclear RNA (snRNA) is essential for pre-mRNA splicing, although its role is not yet clear. On the basis of a model structure (C. Guthrie and B. Patterson, Annu. Rev. Genet. 22:387-419, 1988), the molecule can be thought of as having six domains: stem II, 5' stem-loop, stem I, central region, 3' stem-loop, and 3'-terminal region. We have carried out extensive mutagenesis of the yeast U4 snRNA gene (SNR14) and have obtained information on the effect of mutations at 105 of its 160 nucleotides. Fifteen critical residues in the U4 snRNA have been identified in four domains: stem II, the 5' stem-loop, stem I, and the 3'-terminal region. These domains have been shown previously to be insensitive to oligonucleotide-directed RNase H cleavage (Y. Xu, S. Petersen-Bjørn, and J. D. Friesen, Mol. Cell. Biol. 10:1217-1225, 1990), suggesting that they are involved in intra- or intermolecular interactions. Stem II, a region that base pairs with U6 snRNA, is the most sensitive to mutation of all U4 snRNA domains. In contrast, stem I is surprisingly insensitive to mutational change, which brings into question its role in base pairing with U6 snRNA. All mutations in the putative Sm site of U4 snRNA yield a lethal or conditional-lethal phenotype, indicating that this region is important functionally. Only two nucleotides in the 5' stem-loop are sensitive to mutation; most of this domain can tolerate point mutations or small deletions. The 3' stem-loop, while essential, is very tolerant of change. A large portion of the central domain can be removed or expanded with only minor effects on phenotype, suggesting that it has little function of its own. Analysis of conditional mutations in stem II and stem I indicates that although these single-base changes do not have a dramatic effect on U4 snRNA stability, they are defective in RNA splicing in vivo and in vitro, as well as in spliceosome assembly. These results are discussed in the context of current knowledge of the interactions involving U4 snRNA.  相似文献   

19.
Vitamin K-dependent protein S is an anticoagulant plasma protein functioning as a cofactor to activated protein C in the degradation of coagulation factors Va and VIIIa. To determine which regions in protein S are important for its cofactor activity, we have raised and characterized a large panel of monoclonal antibodies against human protein S. Several of the antibodies were directed against Ca2(+)-dependent epitopes, and they were found to be located either in the domain containing gamma-carboxyglutamic acid (Gla), the thrombin-sensitive region, or in the first epidermal growth factor (EGF)-like domain. The first two types of epitopes were exposed at approximately 1 mM Ca2+, whereas the epitope(s) in the EGF-like domains required less than 1 microM Ca2+, suggesting the presence of one or more high affinity Ca2(+)-binding site(s). The antibodies, as well as their Fab' fragments, against all three types of Ca2(+)-dependent epitopes efficiently inhibited the activated protein C cofactor function of protein S, but through different mechanisms. The antibodies against the Gla domain exerted their effects through inhibition of protein S binding to negatively charged phospholipid. Fab'-fragments of antibodies against the thrombin-sensitive region and the first EGF-like domain were the most potent inhibitors of the activated protein C cofactor function but did not inhibit phospholipid binding of protein S. In conclusion, we have identified the domains in protein S that are important for the activated protein C cofactor activity. The Gla domain is instrumental in the binding of protein S to phospholipid, whereas the thrombin-sensitive region and the first EGF-like domain may be directly involved in protein-protein interactions on the phospholipid surface.  相似文献   

20.
The actin cytoskeleton of mature osteoclasts (OCs) adhering to nonmineralized substrates is organized in a belt of podosomes reminiscent of the sealing zone (SZ) found in bone resorbing OCs. In this study, we demonstrate that the belt is composed of two functionally different actin-based domains: podosome cores linked with CD44, which are involved in cell adhesion, and a diffuse cloud associated with beta3 integrin, which is involved in cell adhesion and contraction. Wiskott Aldrich Syndrome Protein (WASp) Interacting Protein (WIP)-/- OCs were devoid of podosomes, but they still exhibited actin clouds. Indeed, WIP-/- OCs show diminished expression of WASp, which is required for podosome formation. CD44 is a novel marker of OC podosome cores and the first nonintegrin receptor detected in these structures. The importance of CD44 is revealed by showing that its clustering restores podosome cores and WASp expression in WIP-/- OCs. However, although CD44 signals are sufficient to form a SZ, the presence of WIP is indispensable for the formation of a fully functional SZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号