首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymerized and depolymerized forms of tubulin were measured in rat and mouse liver, rat islets, human lymphocytes, and platelets. The percent of the total tubulin present in the polymerized form varied from 30.3 +/- 1.5% in the liver of the fed rat to 89.2 +/- 0.2% in human platelets. Fasting decreased the total tubulin and to a greater extent the polymerized form of tubulin in both rat and mouse liver. Glucose feeding increased the polymerized tubulin without affecting the total tubulin content in rat liver. Phytohemagglutinin-stimulated lymphocytes exhibited at least a three-fold increase in total tubulin (expressed in terms of DNA content), which during the initial 48 h of incubation was accounted for in toto by an increase in polymerized tubulin. It is suggested that the lectin not only accelerates tubulin synthesis but also stimulated the polymerization process. Storage of platelets at 4 degrees C for 6 days resulted in a marked decrease in total tubulin and an even greater reduction in the polymerized form. It is concluded that both the total tubulin content and its degree of polymerization can be modulated independently by a wide variety of physiological factors.  相似文献   

2.
1. Microtubules (MT) from a guinea pig brain 25,000 g supernatant are not depolymerized by colchicine in contrast to MT from similar preparations of rat and rabbit. 2. The colchicine-stability was lost if the guinea pig brain homogenate was centrifuged at a higher g-level, further purified or if only the grey matter was used. 3. The association constant of colchicine to tubulin did not differ between a stable and a labile guinea pig brain preparation. 4. The GTP-hydrolysis was higher in the guinea pig preparation containing stable MT, than in the preparation containing labile MT. Additional GTP added to the polymerized MT before colchicine exposure, labilized the MT. Preincubation with NaF decreased the GTP-hydrolysis and caused a colchicine depolymerization. 5. The results indicate species differences in colchicine sensitivity of in vitro polymerized MT, probably depending on differences in GTP-hydrolysis.  相似文献   

3.
Trypsin preferentially cleaves the alpha subunit of depolymerized tubulin or vinblastine induced aggregates (in which longitudinal interactions between tubulin molecules could take place). No cleavage was found for tubulin polymerized into microtubules (containing lateral and longitudinal tubulin interactions), in the presence of taxol. In the presence of colchicine or podophyllotoxin the alpha subunit was partially protected from proteolytic digestion. Trypsin digestion pattern varied upon the addition of different concentrations of griseofulvin. At the higher concentration used, in which microtubules assembly was inhibited, both tubulin subunits were cleaved.  相似文献   

4.
The relative amount of free and microtubule-associated tubulin in tissue culture cells was determined by colchicine binding. Both microtubules and tubulin were stabilized in a dilute homogenate containing 50% glycerol and 5% dimethylsulfoxide. Microtubules were separated by sedimentation at 100,000g for 10 min in a benchtop ultracentrifuge and then depolymerized to tubulin. Colchicine binding to free tubulin could be performed only after dilution of the organic solvents present to prevent a 70% reduction in apparent affinity of tubulin for colchicine. Tubulins purified from rat brain, human skin fibroblasts, and rat GH3 cells were each homogeneous and similar in molecular weight, affinity for DEAE-cellulose, and apparent affinity for colchicine. Microtubules contained 34–41% of tissue culture cell tubulin. Colchicine (10?6 to 10?5m) and incubation at 4°C reduced microtubule-derived tubulin to less than 6% of expected.  相似文献   

5.
Intermembrane linkage mediated by tubulin   总被引:2,自引:0,他引:2  
Two membranes from brain lipids were formed in the presence of brain tubulin and their electrical potentials were simultaneously measured. When electrical pulses were applied across one of them, displacements of the potential of the other membrane were found even when the membranes were not in contact. This effect was observed only in the presence of polymerized tubulin. It was not found in the presence of depolymerized tubulin or in other control experiments. The findings suggest that the microtubule fiber networks may serve as an interconnecting system between membranes or membrane bounded compartments.  相似文献   

6.
A method is described for measuring the quantities of stable and dynamic microtubules in a population in vitro. The method exploits the tendency of dynamic microtubules to depolymerize rapidly after being sheared. Stable microtubules, such as those protected by microtubule-associated proteins (MAPs), are broken to a smaller size by shearing, but do not depolymerize into subunits. The usual difficulty with this procedure is that the tubulin released from the dynamic microtubules rapidly repolymerizes before the end point of depolymerization can be measured. This has been overcome by including a small quantity of tubulin-colchicine complex in the mixture to block the repolymerization. For a total of 24 microM tubulin in a polymerization mixture, 10 microM of the sample polymerized originally under the conditions used. When 1.05 microM tubulin-colchicine complex was added at the time of shearing, the dynamic microtubules depolymerized, but the tubulin was released was unable to repolymerize and a small fraction of stable microtubules that resisted shear-induced depolymerization could then be detected. When traces of MAPs (0.23-2.8% by mass) were included in the tubulin mixture, the fraction of stable microtubules increased from 5% in the absence of added MAPs to 41% in the presence of 2.8% MAPs. All the MAPs in the mixture were found in the stable fraction and this stable fraction forms early during microtubule assembly. Calculations on the extent of enrichment of MAPs in the stable fraction indicated that as little as 4% MAPs in a microtubule protected it from shear-induced disassembly. The results suggest that low levels of MAPs may distribute nonrandomly in the microtubule population.  相似文献   

7.
Enhancement of tubulin assembly as monitored by a rapid filtration assay   总被引:1,自引:0,他引:1  
The early kinetics of microtubule formation from lamb brain tubulin isolated by affinity chromatography can be followed by a newly developed filter assay. The rapid collection of microtubules on glass fiber filters permits the calculation of the moles of tubulin polymerized. The filter assay gives both a rate and extent of polymerization that are identical to those obtained by turbidity or sedimentation analysis, respectively. The microtubules trapped by the filter are readily depolymerized by cold (t12= 3 min) and slowly by colchicine (t1/2= 32min). Tubulin purified by affinity chromatography requires a high protein concentration (>4 mg/ml) for polymerization. Although 5m glycerol allows polymerization to occur at tubulin concentrations below 2 mg/ml, the maximum amount of microtubule formation is observed at low tubulin concentration when microtubule-associated proteins are present. These proteins are not retained by the affinity resin; however, they can be eluted from diethylaminoethyl-Sephadex by solutions containing 0.3m KCl. Microtubule-associated proteins enhance both the rate of polymerization and the total amount of tubulin polymerized as assessed by the filter assay, suggesting that they are involved in both initiation and elongation of microtubules.  相似文献   

8.
Involvement of hepatic microtubules in plasma protein secretion by the liver was investigated by stimulating protein secretion in rat liver and then measuring the different forms of tubulin. Total and free tubulin were estimated in liver supernatants by the [3H] colchicine-binding assay. Polymerized tubulin, assumed to reflect the presence of microtubules, was calculated from the difference between total and free tubulin. To enhance liver plasma protein secretion, an acute inflammatory reaction was induced in one group of rats and a nephrotic syndrome in another. In both cases, total liver tubulin increased significantly compared to normal animals, but free tubulin was unchanged. Accordingly, polymerized tubulin rose by 50% during the inflammatory reaction and by 90% during the nephrotic syndrome. These results support the hypothesis that hepatic microtubules are involved in plasma protein secretion by the liver and also suggest that enhanced secretion requires additional microtubules.  相似文献   

9.
A sensitive and reproducible method to measure relative levels of polymerized and soluble tubulin in cells has been developed. This method involves metabolically labeling cells with radioactive amino acids followed by lysis in a microtubule-stabilizing buffer, centrifugation to separate soluble from polymerized tubulin, resolution of the proteins in each fraction by two-dimensional gel electrophoresis, and quantitation of the tubulin by liquid scintillation counting of spots excised from the gel. Several buffers were evaluated for their reproducibility and efficacy in preserving the state of in vivo microtubule assembly at the time of cell lysis, and the ability of the technique to measure drug-induced changes in tubulin polymerization was determined. Results using this method indicate that Chinese hamster ovary cells maintain approximately 40% of the cellular tubulin in an assembled form. Dose-dependent decreases in tubulin polymerization could be measured in Colcemid-treated cells, while dose-dependent increases in assembly were measured in taxol-treated cells. The results with taxol indicate that, following the increase in microtubule polymerization, there is a time-dependent bundling of microtubules that occurs without further increases in the extent of tubulin assembly. Examination of drug-resistant Chinese hamster ovary cells reveals that Colcemid-resistant mutants maintain more tubulin in the polymerized state (approximately 50%), while taxol-resistant mutants maintain less assembled tubulin (about 28%). Similar changes occur regardless of whether the mutant cells have an alteration in alpha- or in beta-tubulin. A model to explain these results is discussed.  相似文献   

10.
We studied the characteristics of cytoplasmic microtubule reassembly from endogenous tubulin pools in situ using a Brij 58-lysed 3T3 cell system. Cells that were pretreated in vivo with colcemid retain endogenous tubulin in the depolymerized state after lysis. When lysed cells were removed from colcemid block and incubated in GTP-PIPES reassembly buffer at pH 6.9, microtubules repolymerized randomly throughout the cytoplasm, appeared to be free-ended and were generally not associated with the centrosomes. However, tubulin could be induced to polymerize in an organized manner from the centrosomes by increasing the pH to 7.6 in the presence of ATP and cAMP. Microtubules polymerized in ATP had significantly longer lengths than those assembled in GTP or UTP. When cells not treated with colcemid were lysed, the integrity of the cytoplasmic microtubule complex (CMTC) was maintained during subsequent incubation in reassembly buffer. However, in contrast to unlysed, living cells, microtubules of lysed cells were stable to colchicine. A significant fraction of the CMTC was stable to cold- induced disassembly whereas microtubules reassembled after lysis were extremely cold-sensitive. When cells not treated with colcemid were lysed and incubated in millimolar Ca++, microtubules depolymerized from their distal ends and a much reduced CMTC was observed. Ca++ reversal with EGTA rapidly resulted in a reformation of the CMTC apparently by elongation of Ca++ resistant microtubules.  相似文献   

11.
The unlabeled antibody peroxidase-antiperoxidase (PAP) method of Sternberger et al. has been employed at the ultramicroscopic level to stain filaments polymerized in vitro from aqueous extracts of multiple sclerosis (MS) plaques. The filaments were heavily decorated with antiserum to the glial fibrillary acidic (GFA) protein but not stained with serum absorbed with GFA protein, preimmunization serum, or anti-rat brain tubulin antiserum. Reassembled rat brain tubulin was heavily stained with antiserum to tubulin but was not stained with antiserum to the GFA protein. The present study provides direct morphological evidence that filaments polymerized in vitro from extracts of MS plaques contain the GFA protein.  相似文献   

12.
Determination of experimental conditions which allow the evaluation of the variations in the ratio of non polymerized and polymerized forms of actin and tubulin during the reorganization of the cytoskeletal cell system is of most valuable importance. In order to prepare cell homogenates which would reflect the in vivo situation, we tested in vitro a lysis medium which stabilized both microfilaments and microtubules, which were determined by DNase inhibition assays and colchicine binding assays respectively. This lysis medium containing 10 mM potassium phosphate, 1mM magnesium chloride, 5 mM EGTA, 1 M hexylene glycol, 1% Triton X-100, pH 6.4, used at 4 degrees C a) diffused rapidly into the cells; b) did not denature actin and tubulin; c) did not displace the equilibrium between non polymerized and polymerized forms of actin and tubulin, allowing biochemical assays on cell homogenates; d) blocked the evolution of the cytoskeletal system and permitted structural studies; e) and allowed the decoration of microfilaments by heavy meromyosin.  相似文献   

13.
J Eyer  D White    C Gagnon 《The Biochemical journal》1990,270(3):821-824
Brain tubulin polymerized with dynein isolated from bull spermatozoa forms cold-stable microtubules, in contrast with microtubules made of brain tubulin polymerized by brain microtubule-associated proteins (MAPs). The level of cold-stable microtubules depends on the concentration of dynein used. Addition of dynein to cold-unstable microtubules renders these microtubules stable to cold. Although ATP and a non-hydrolysable ATP analogue increase the formation of microtubules made of tubulin and dynein, these nucleotides have no effect on dynein cold-stabilizing properties. The data suggests that a new factor, not involving the dynein ATPase active site and present in bull sperm dynein preparations, confers cold-stability to microtubules.  相似文献   

14.
Electric birefringence has been used to examine the states of association of tubulin in phosphocellulose-purified tubulin or depolymerized microtubule protein solutions at low temperature. In a high electric field (1000-4000 V/cm), tubulin could be orientated (owing to the existence of a permanent and/or induced dipole) and exhibited a positive birefringence (delta n), related to its intrinsic optical anisotropy. The analysis of the relaxation process (depending on hydrodynamic properties of molecules), by measurement of the time decay of delta n, revealed the existence of a multicomponent or polydisperse system, whatever the tubulin solution. Two relaxation times, representative of the smallest and the largest orientated species, were obtained by computer-fitting analysis. The mean values of relaxation time for phosphocellulose-purified tubulin were 0.8 and 8 microseconds. In microtubule protein solutions, large-sized macromolecular species with relaxation time up to 450 microseconds were detected. The largest species (relaxation times ranging from 50 to 450 microseconds) could be eliminated by centrifugation at 3000000 X g for 1 h. Addition of microtubule-associated protein to either pure tubulin or high-speed centrifuged microtubule protein led to a rapid formation of large species analogous to those present in microtubule protein. Molecular dimensions of the relaxing structures were estimated using simple hydrodynamic models and values of rotational diffusion constants calculated from the relaxation times, and compared to those of the structures described in the literature. In conclusion, we have found that (a) phosphocellulose-purified tubulin is not only composed of elementary species (dimers) but also contains tubulin-associated forms of limited size (up to 7-10 dimers), (b) depolymerized microtubule protein solutions contain ring oligomers and structures very much larger, the formation of which is dependent on the presence of microtubule-associated protein.  相似文献   

15.
Tubulin, a potential target for anti-cancer drugs, has been purified in one step and obtained as flow-through fraction directly from an extract of a mammalian brain tissue by adsorption chromatography on H-CELBEADS, an indigenously developed rigid, superporous cross-linked cellulose based weakly hydrophobic adsorbent. The fibrous polymerized tubulin mass passed through the H-CELBEADS bed while the associated proteins were separated by adsorption. The final tubulin preparation was obtained free from other proteins as seen on SDS-PAGE. Purified tubulin was obtained in a yield of about 29 mg/100 g brain, and its bioactivity, evaluated through its ability to bind colchicine, was found to be preserved.  相似文献   

16.
In the testis, microtubule-disrupting agents cause breakdown of the Sertoli cell cytoskeleton and sloughing of germ cells with associated Sertoli cell fragments, although the mechanism underlying this event is not understood. In this study, we investigated the effects of carbendazim and colchicine on microtubule polymerization status and posttranslational modifications of tubulin in freshly isolated rat seminiferous tubules. Soluble and polymerized tubulin pools were separated and tubulin was quantified using a competitive ELISA. Carbendazim and colchicine caused extensive microtubule depolymerization, shifting the ratio of soluble to polymerized tubulin from 40%:60% to 78%:22%, and to 84%:16%, respectively. Total tubulin levels remained relatively constant after carbendazim treatment but decreased twofold after colchicine treatment. To determine if modifications to tubulin may be associated with polymerization status, tubulin pools were analyzed by immunoblotting. Acetylated alpha-tubulin and betaIII-tubulin distribution in tubulin pools was not affected by treatment. Tyrosinated alpha-tubulin (52 kDa) was localized in both tubulin pools and had decreased tyrosination in the microtubule pool after carbendazim treatment. A 47-kDa protein immunoreactive with both tyrosinated alpha-tubulin and general alpha-tubulin antibodies was found only in the microtubule pool. The 47-kDa protein (potentially an alpha-tubulin isoform) lost tyrosination, yet was still present in the microtubule pool based on detection with the general alpha-tubulin antibody, after carbendazim treatment. Similar effects were seen with colchicine, although loss of total tubulin protein was measured. Thus, decreased tyrosination of the microtubule pool of tubulin appears to be associated with depolymerization of microtubules.  相似文献   

17.
Nucleotide binding and phosphorylation in microtubule assembly in vitro.   总被引:4,自引:0,他引:4  
Two non-hydrolyzable analogs of GTP, guanylyl-β,γ-methylene diphosphonate and guanylyl imidodiphosphate, have been found to induce rapid and efficient microtubule assembly in vitro by binding at the exchangeable site (E-site) on tubulin. Characterization of microtubule polymerization by several criteria, including polymerization kinetics, nucleotide binding to depolymerized and polymerized microtubules, and microtubule stability, reveals strong similarities between microtubule assembly induced by GTP and non-hydrolyzable GTP analogs. Nucleoside triphosphates which bind weakly or not at all to tubulin, such as ATP, UTP and CTP, are shown to induce microtubule assembly by means of a nucleoside diphosphate kinase (NDP-kinase, EC 2.7.4.6.) activity which is not intrinsic to tubulin. The NDP-kinase mediates microtubule polymerization by phosphorylating tubulin-bound GDP in situ at the E-site. Although hydrolysis of exchangeably bound GTP occurs, it is found to be uncoupled from the polymerization reaction. The non-exchangeable nucleotide binding site on tubulin (N-site) is not directly involved in microtubule assembly in vitro. The N-site is shown to contain almost exclusively GTP which is not hydrolyzed during microtubule assembly. A scheme is presented in which GTP acts as an allosteric effector at the E-site during microtubule assembly in vitro.  相似文献   

18.
Summary We studied the solubility properties of brain acetylated -tubulin, as well as the localization of this tubulin in brain tissue. Endogenous unpolymerized tubulin and cytoskeletal tubulin were fractionated after brain Triton-solubilization. Using the immunoblotting technique, we found that acetylated -tubulin was recovered in the cytoskeletal fraction, and that most (92%) of the acetylated microtubules of this fraction were depolymerized by cold/Ca2+ treatment. In another set of experiments, axonal and soma-dendritic preparations were found to have equivalent amounts of acetylated -tubulin. By immunogold electron microscopy, we established that acetylated microtubules are widely distributed in dendrites of the central nervous system.  相似文献   

19.
Native pig brain tubulin in heterodimer or polymer form was subjected to limited proteolysis by subtilisin, which is known to cleave at accessible sites within the last 50 amino acids of the highly variable carboxyl-termini of the alpha and beta subunits. Heterodimeric tubulin or tubulin polymerized in the presence of 4 M glycerol or taxol was used in these experiments. Digested tubulin was purified by cycles of polymerization and depolymerization, ammonium sulfate precipitation, or ion-exchange chromatography in the absence or presence of nonionic detergent; however, smaller cleaved products of about 34,000 to 40,000 MW remained associated with the major cleaved subunits, alpha' and beta', under all purification conditions. In order to determine the effect of subtilisin cleavage on tubulin heterogeneity, purified native or subtilisin-cleaved tubulin was subjected to isoelectric focusing, followed by SDS-PAGE. The total number of isotypes was reduced from 17-22 for native alpha,beta tubulin to 7-9 for subtilisin-cleaved alpha',beta' tubulin. When tubulin heterodimers were cleaved, a single major beta' isotype was evident; however, when tubulin polymerized in 4 M glycerol was cleaved, two major beta' isotypes were found. Monoclonal antibodies that recognize a beta carboxyl-terminal peptide, residues 410-430, reacted with both major beta' isotypes, indicating that subtilisin cleavage occurred within the last 20 of the 450 amino acids. In order to establish whether this difference was in fact associated with polymer or heterodimer forms of tubulin, digestion was carried out in the presence of taxol, which stabilizes tubulin polymers. A single major beta' isotype different from the cleaved heterodimer, but coincident with one of the bands of the cleaved glycerol-induced polymers, was found when taxol-treated tubulin was digested. This result suggests the presence of more than one subtilisin site in the beta subunit, near residues 430-435, with different accessibility to the enzyme in the heterodimer and polymer form.  相似文献   

20.
The tubulin of both brain and testes of the amphibian Bufo spinulosus, Leptodactylus ocellatus and Odontophrynus occidentalis and of the fish Salvelinus fontinalis were partially depolymerized when the animals were maintained on ice for 90 min. Recovery of the animals at room temperature restored the normal degree of polymerization in both organs. The cerebral tubulin of the saurian Phymatura palluma and of the mammalian Myotis chiloensis instead, were not depolymerized in these conditions. The results suggest that the depolymerization in vivo of tubulin by lowering body temperature at 0-2 degrees C, is common to many, but not all species of vertebrates. The existence of a cold stabilizing factor in the brain of some species is suggested. A comparison is made between these results and those of other authors who observed microtubule disaggregation by cold with the electron microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号