首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ATP-binding cassette transporter protein, multidrug resistance protein MRP1, was purified from doxorubicin-selected H69AR lung tumor cells which express high levels of this protein. A purification procedure comprised of a differential two-step solubilization of MRP1 from plasma membranes with 3-(3-cholamidopropyl)dimethylammonio-1-propanesulfonate followed by immunoaffinity chromatography using the MRP1-specific monoclonal antibody QCRL-1 was developed. Approximately 300 microgram of MRP1 was obtained from 6 mg of plasma membranes at 80-90% purity, as indicated by silver staining of protein gels. After reconstitution of purified MRP1 into proteoliposomes, kinetic analyses indicated that its K(m) for ATP hydrolysis was 104+/-22 microM with maximal activity of 5-10 nmol min(-1) mg(-1) MRP1. MRP1 ATPase activity was further characterized with various inhibitors and exhibited an inhibition profile that distinguishes it from P-glycoprotein and other ATPases. The ATPase activity of reconstituted MRP1 was stimulated by the conjugated organic anion substrates leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) with 50% maximal stimulation achieved at concentrations of 150 nM and 1.6 microM, respectively. MRP1 ATPase was also stimulated by glutathione disulfide but not by reduced glutathione or unconjugated chemotherapeutic agents. This purification and reconstitution procedure is the first to be described in which the ATPase activity of the reconstituted MRP1 retains kinetic characteristics with respect to ATP-dependence and substrate stimulation that are very similar to those deduced from transport studies using MRP1-enriched plasma membrane vesicles.  相似文献   

2.
The apical multidrug resistance protein MRP2 (symbol ABCC2) is an ATP-dependent export pump for anionic conjugates in polarized cells. MRP2 has only 48% amino acid identity with the paralog MRP1 (ABCC1). In this study we show that purified recombinant MRP2 reconstituted in proteoliposomes is functionally active in substrate transport. The Km values for ATP and LTC4 in the transport by MRP2 in proteoliposomes were 560 microM and 450 nM, respectively. This transport function of MRP2 in proteoliposomes was dependent on the amount of MRP2 protein present and was determined to 2.7 pmol x min(-1) x mg MRP2(-1) at 100 nM LTC4. Transport was competitively inhibited by the quinoline derivative MK571 with 50% inhibition at about 12 microM. Our data document the first reconstitution of transport-active purified recombinant MRP2. Binding and immunoprecipitation experiments indicated that MRP2 preferentially associates with the chaperone calnexin, but co-reconstitution studies using purified MRP2 and purified calnexin in proteoliposomes suggested that the LTC4 transport function of MRP2 is not dependent on calnexin. The purified, transport-active MRP2 may serve to identify additional interacting proteins in the apical membrane of polarized cells.  相似文献   

3.
Active transport of conjugated and unconjugated electrophiles out of cells is essential for cellular homeostasis. We have previously identified in human tissues a transporter, DNP-SG [S-(2, 4-dinitrophenyl)glutathione] ATPase, capable of carrying out this function [Awasthi et al. (1998) Biochemistry 37, 5231-5238, 5239-5248]. We now report the cloning of DNP-SG ATPase. The sequence of the cDNA clone was identical to that of human RLIP76, a known Ral-binding protein. RLIP76 expressed in E. coli was purified by DNP-SG affinity chromatography. Purified recombinant RLIP76: (1) had ATPase activity stimulated by DNP-SG or doxorubicin (DOX), and the K(m) values of RLIP76 for ATP, DOX, and DNP-SG were similar to those reported for DNP-SG ATPase; (2) upon reconstitution with asolectin as well as with defined lipids, catalyzed ATP-dependent transport of DNP-SG and DOX with kinetic parameters similar to those of DNP-SG ATPase; (3) when transfected into K562 cells, resulted in increased resistance to DOX, and increased ATP-dependent transport of DNP-SG and DOX by inside-out membrane vesicles from transfected cells; (4) direct uptake of purified RLIP76 protein into mammalian cells from donor proteoliposomes confers DOX resistance. These results indicate that RLIP76, in addition to its role in signal transduction, can catalyze transport of glutathione conjugates and xenobiotics, and may contribute to the multidrug resistance phenomenon.  相似文献   

4.
The 190-kDa multidrug resistance protein MRP1 (ABCC1) is a polytopic transmembrane protein belonging to the ATP-binding cassette transporter superfamily. In addition to conferring resistance to various antineoplastic agents, MRP1 is a transporter of conjugated organic anions, including the cysteinyl leukotriene C(4) (LTC(4)). We previously characterized the ATPase activity of reconstituted immunoaffinity-purified native MRP1 and showed it could be stimulated by its organic anion substrates (Mao, Q., Leslie, E. M., Deeley, R. G., and Cole, S. P. C. (1999) Biochim. Biophys. Acta 1461, 69-82). Here we show that purified reconstituted MRP1 is also capable of active transport of its substrates. Thus LTC(4) uptake by MRP1 proteoliposomes was osmotically sensitive and could be inhibited by two MRP1-specific monoclonal antibodies. LTC(4) uptake was also markedly reduced by the competitive inhibitor, S-decyl-glutathione, as well as by the MRP1 substrates 17 beta-estradiol 17-beta-(d-glucuronide), oxidized glutathione, and vincristine in the presence of reduced glutathione. The K(m) for ATP and LTC(4) were 357 +/- 184 microm and 366 +/- 38 nm, respectively, and 2.14 +/- 0.75 microm for 17 beta-estradiol 17-beta-(d-glucuronide). Transport of vincristine required the presence of both ATP and GSH. Conversely, GSH transport was stimulated by vincristine and verapamil. Our data represent the first reconstitution of transport competent purified native MRP1 and confirm that MRP1 is an efflux pump, which can transport conjugated organic anions and co-transport vincristine together with GSH.  相似文献   

5.
Multidrug resistance-associated protein (MRP1) may function as a floppase in human red blood cells to translocate phosphatidylserine and/or phosphatidylcholine from inner membrane leaflet to outer leaflet. Here we report that the purified and reconstituted MRP1 protein into asolectin proteoliposomes is mainly in an inside-out configuration and possesses the ability to flop a fluorescent labeled phosphatidylcholine (NBD-PC) from outer leaflet (protoplasmic) to inner leaflet (extracytoplasmic). The reconstituted MRP1 protein retains endogenous ATPase activity. ATP hydrolysis is required for the flopping since removal of ATP and/or Mg2+ inhibits the translocation of NBD-PC. Further evidence to support this conclusion is that the translocation of NBD-PC is inhibited by vanadate, which traps ATP hydrolysis product ADP in the nucleotide binding domains. In addition, the translocation of NBD-PC by proteoliposomes containing MRP1 protein is in a glutathione-dependent manner, similar to the process of translocating anticancer drugs such as daunorubicin. verapamil, vincristine, vinblastine, doxorubicin and oxidized glutathione partially inhibited the translocation of NBD-PC, whereas MK 571, an inhibitor of MRP1 protein, inhibited the translocation almost completely. Taken together, the purified and reconstituted MRP1 protein possesses the ability to flop NBD-PC from outer to inner leaflet of the proteoliposomes.  相似文献   

6.
Functional expression of multidrug resistance protein 1 in Pichia pastoris.   总被引:2,自引:0,他引:2  
J Cai  R Daoud  E Georges  P Gros 《Biochemistry》2001,40(28):8307-8316
Overexpression of the multidrug resistance-associated protein (MRP1) causes multidrug resistance in cultured cells. MRP1 transports a large number of glutathione, glucuronide, and sulfate-conjugated organic anions by an ATP-dependent efflux mechanism. Six other MRP proteins exist (MRP2-7), and mutations in some of these genes cause major pathological conditions in humans. A detailed characterization of the structure and mechanism of action of these proteins requires an efficient expression system from which large amounts of active protein can be obtained. We report the expression of a recombinant MRP1 in the methylotrophic yeast Pichia pastoris. The protein is expressed in the membrane fraction of these cells, as a stable and underglycosylated 165 kDa peptide. Expression levels are very high, and 30 times superior to those seen in multidrug-resistant HeLa/MRP1 transfectants. MRP1 expressed in P. pastoris binds 8-azido[alpha-(32)P]ATP in a Mg(2+)-dependent and EDTA-sensitive fashion, which can be competed by a molar excess of ADP and ATP. Under hydrolysis conditions (at 37 degrees C), orthovanadate induces trapping of the 8-azido[alpha-(32)P]nucleotide in MRP1, which can be further modulated by known MRP1 ligands. MRP1 is also labeled by a photoactive analogue of rhodamine 123 (IAARh123) in P. pastoris/MRP1 membranes, and this can be competed by known MRP1 ligands. Finally, MRP1-positive membrane vesicles show ATP-dependent uptake of LTC(4). Thus, MRP1 expressed in P. pastoris is active and shows characteristics of MRP1 expressed in mammalian cells, including drug binding, ligand-modulated formation of the MRP1-MgADP-P(i) intermediate (ATPase activity), and ATP-dependent substrate transport. The successful expression of catalytically active and transport-competent MRP1 in P. pastoris should greatly facilitate the efficient production and isolation of the wild type or inactive mutants of MRP1, or of other MRP proteins for structural and functional characterization.  相似文献   

7.
Shukla S  Rai V  Saini P  Banerjee D  Menon AK  Prasad R 《Biochemistry》2007,46(43):12081-12090
Candida albicans drug resistance protein 1 (Cdr1p), an ATP-dependent drug efflux pump, contributes to multidrug resistance in Candida-infected immunocompromised patients. Previous cell-based assays suggested that Cdr1p also acts as a phospholipid translocator. To investigate this, we reconstituted purified Cdr1p into sealed membrane vesicles. Comparison of the ATPase activities of sealed and permeabilized proteoliposomes indicated that Cdr1p was asymmetrically reconstituted such that approximately 70% of the molecules had their ATP binding sites accessible to the extravesicular space. Fluorescent glycerophospholipids were incorporated into the outer leaflet of the proteoliposomes, and their transport into the inner leaflet was tracked with a quenching assay using membrane-impermeant dithionite. We observed ATP-dependent transport of the fluorescent lipids into the inner leaflet of the vesicles. With approximately 6 molecules of Cdr1p per vesicle on average, the half-time to reach the maximal extent of transport was approximately 15 min. Transport was reduced in vesicles reconstituted with Cdr1p variants with impaired ATPase activity and could be competed out to different levels by a molar excess of drugs such as fluconazole and miconazole that are known to be effluxed by Cdr1p. Transport was not affected by ampicillin, a compound that is not effluxed by Cdr1p. Our results suggest a direct link between the ability of Cdr1p to translocate fluorescent phospholipids and efflux drugs. We note that only a few members of the ABC superfamily of Candida have a well-defined role as drug exporters; thus, lipid translocation mediated by Cdr1p could reflect its cellular function.  相似文献   

8.
The expression of multidrug resistance-associated protein (MRP1) results in ATP-dependent reduction of drugs' concentration in cancer cells, i.e., multidrug resistance (MDR). Since the majority of projects are concentrated on the search of the new MDR modulators, there are very few reports on drug-induced stimulation of MDR transporters activity. In the present work, by means of functional fluorescence assay we have shown that MRP1-mediated efflux of 2',7'-bis-(3-carboxypropyl)-5-(and-6)-carboxyfluorescein (BCPCF) out of human erythrocytes is stimulated by phenothiazine maleates that have been already identified as P-glycoprotein inhibitors. Phenothiazine maleates-induced stimulation of ATP-dependent uptake of 2',7'-bis-(3-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) into inside-out membrane vesicles prepared from erythrocyte membranes has been also demonstrated. Moreover, it was shown that phenothiazine maleates exerted stimulating effect on ATPase activity measured in erythrocyte membranes. To our best knowledge, this report is the first one demonstrating that compounds able to inhibit transport activity of P-glycoprotein can stimulate MRP1 transporter. We conclude that phenothiazine maleates probably exert their stimulatory effect on MRP1 by direct interaction with the protein at the site different from the substrate binding site.  相似文献   

9.
Human multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette transporter family and transports chemotherapeutic drugs as well as diverse organic anions such as leukotriene LTC(4). The transport of chemotherapeutic drugs requires the presence of reduced GSH. By using hydrogen/deuterium exchange kinetics and limited trypsin digestion, the structural changes associated with each step of the drug transport process are analyzed. Purified MRP1 is reconstituted into lipid vesicles with an inside-out orientation, exposing its cytoplasmic region to the external medium. The resulting proteoliposomes have been shown previously to exhibit both ATP-dependent drug transport and drug-stimulated ATPase activity. Our results show that during GSH-dependent drug transport, MRP1 does not undergo secondary structure changes but only modifications in its accessibility toward the external environment. Drug binding induces a restructuring of MRP1 membrane-embedded domains that does not affect the cytosolic domains, including the nucleotide binding domains, responsible for ATP hydrolysis. This demonstrates that drug binding to MRP1 is not sufficient to propagate an allosteric signal between the membrane and the cytosolic domains. On the other hand, GSH binding induces a conformational change that affects the structural organization of the cytosolic domains and enhances ATP binding and/or hydrolysis suggesting that GSH-mediated conformational changes are required for the coupling between drug transport and ATP hydrolysis. Following ATP binding, the protein adopts a conformation characterized by a decreased stability and/or an increased accessibility toward the aqueous medium. No additional change in the accessibility toward the solvent and/or the stability of this specific conformational state and no change of the transmembrane helices orientation are observed upon ATP hydrolysis. Binding of a non-transported drug affects the dynamic changes occurring during ATP binding and hydrolysis and restricts the movement of the drug and its release.  相似文献   

10.
G E Dean  P J Nelson  G Rudnick 《Biochemistry》1986,25(17):4918-4925
The ATP-dependent H+ pump from adrenal chromaffin granules is, like the platelet-dense granule H+ pump, essentially insensitive to the mitochondrial ATPase inhibitors sodium azide, efrapeptin, and oligomycin and also insensitive to vanadate and ouabain, agents that inhibit the Na+,K+-ATPase. The chromaffin granule H+ pump is, however, sensitive to low concentrations of NEM (N-ethylmaleimide) and Nbd-Cl (7-chloro-4-nitro-2,1,3-benzoxadiazole). These transport ATPases may thus belong to a new class of ATP-dependent ion pumps distinct from F1F0-and phosphoenzyme-type ATPases. Comparisons of ATP hydrolysis with ATP-dependent serotonin transport suggest that approximately 80% of the ATPase activity in purified chromaffin granule membranes is coupled to H+ pumping. Most of the remaining ATPase activity is due to contaminating mitochondrial ATPase and Na+,K+-ATPase. When extracted with cholate and octyl glucoside, the H+ pump is solubilized in a monodisperse form that retains NEM-sensitive ATPase activity. When reconstituted into proteoliposomes with crude brain phospholipid, the extracted enzyme recovers ATP-dependent H+ pumping, which shows the same inhibitor sensitivity and nucleotide dependence as the native pump. These data demonstrate that the predominant ATP hydrolase of chromaffin granule membrane is also responsible for ATP-driven amine transport and granule acidification in both native and reconstituted membranes.  相似文献   

11.
The His(6)-tagged N- and C-terminal nucleotide binding (ATP Binding Cassette, ABC) domains of the human multidrug resistance associated protein, MRP1, were expressed in bacteria in fusion to the bacterial maltose binding protein and a two-step affinity purification was utilized. Binding of a fluorescent ATP-analogue occurred with micromolar dissociation constants, MgATP was able to inhibit the ATP-analogue binding with 70 and 200 micromolar apparent inhibition constants, while AMP was nearly ineffective. Both MRP1 nucleotide binding domains showed ATPase activities (V(max) values between 5-10 nmoles/mg protein/min), which is fifty to hundred times lower than that of parent transporter. The K(M) value of the ATP hydrolysis by the nucleotide binding domains were 1.5 mM and 1.8 mM, which is similar to the K(M) value of the native or the purified and reconstituted transporter, N-ethylmaleinimide and A1F(4) inhibited the ATPase activity of both nucleotide binding domains.  相似文献   

12.
Multidrug resistance protein 1 (MRP1) and P-glycoprotein, which are ATP-dependent multidrug efflux pumps and involved in multidrug resistance of tumor cells, are members of the ATP binding cassette proteins and contain two nucleotide-binding folds (NBFs). P-glycoprotein hydrolyzes ATP at both NBFs, and vanadate-induced nucleotide trapping occurs at both NBFs. We examined vanadate-induced nucleotide trapping in MRP1 stably expressed in KB cell membrane by using 8-azido-[alpha-(32)P]ATP. Vanadate-induced nucleotide trapping in MRP1 was found to be stimulated by reduced glutathione, glutathione disulfide, and etoposide and to be synergistically stimulated by the presence of etoposide and either glutathione. These results suggest that glutathione and etoposide interact with MRP1 at different sites and that those bindings cooperatively stimulate the nucleotide trapping. Mild trypsin digestion of MRP1 revealed that vanadate-induced nucleotide trapping mainly occurs at NBF2. Our results suggest that the two NBFs of MRP1 might be functionally nonequivalent.  相似文献   

13.
The purified (Ca2+-Mg2+)-ATPase from rat liver plasma membranes (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215) was incorporated into soybean phospholipid vesicles, together with its activator. In the presence of millimolar concentrations of Mg2+, the reconstituted proteoliposomes displayed a rapid, saturable, ATP-dependent Ca2+ uptake. Half-maximal Ca2+ uptake activity was observed at 13 +/- 3 nM free Ca2+, and the apparent Km for ATP was 16 +/- 6 microM. Ca2+ accumulated into proteoliposomes (2.8 +/- 0.2 nmol of Ca2+/mg of protein/90 s) was totally released upon addition of the Ca2+ ionophore A-23187. Ca2+ uptake into vesicles reconstituted with enzyme alone was stimulated 2-2.5-fold by the (Ca2+-Mg2+)-ATPase activator, added exogenously. The (Ca2+-Mg2+)-ATPase activity of the reconstituted vesicles, measured using the same assay conditions as for ATP-dependent Ca2+ uptake activity (e.g. in the presence of millimolar concentrations of Mg2+), was maximally activated by 20 nM free Ca2+, half-maximal activation occurring at 13 nM free Ca2+. The stoichiometry of Ca2+ transport versus ATP hydrolysis approximated 0.3. These results provide a direct demonstration that the high affinity (Ca2+-Mg2+)-ATPase identified in liver plasma membranes is responsible for Ca2+ transport.  相似文献   

14.
YCF1 is a yeast vacuole membrane transporter involved in resistance to Cd(2+) and to exogenous glutathione S-conjugate precursors. MRP1 contributes to multidrug resistance (MDR) in tumor cells. MRP1 and YCF1 have extensive amino acid sequence homology (63% amino acid similarity). We expressed MRP1 or YCF1 in insect cell membranes and compared their functions to know more about their structure-function relationships. YCF1 and MRP1 with His epitopes were expressed in Sf21 insect cells; both of them in the plasma membrane. The ATP-dependent transport of [(3)H]LTC(4) in Sf/YCF1-His vesicles was osmotically sensitive and showed saturable kinetics with an apparent K(m) of 758 nM for LTC(4) and 94 microM for ATP which were similar to those in yeast cells. The K(m) of YCF1 for LTC(4) (758 nM) was sevenfold higher than that of MRP1 (108 nM). MK-571 and ONO-1078, reversing agents for MRP1-mediated MDR, considerably inhibited the transport of LTC(4) by both YCF1 and MRP1. However, PAK-104P, a pyridine analog that reverses MDR associated with P-gp and MRP1, inhibited the transporting activity of MRP1 stronger than that of YCF1. KE1, another MDR reversing agent, moderately inhibited the transport of LTC(4) by MRP1 but not that of YCF1. In conclusion, we successfully expressed yeast YCF1 in Sf21 insect cells and found that the localization of the protein was different from that in yeast. The function of YCF1 in Sf21 insect cells was similar but not identical to that of MRP1.  相似文献   

15.
We have recently shown that RLIP76, a Ral-binding, GTPase-activating protein, is an ATP-dependent transporter of doxorubicin (DOX) as well as glutathione conjugates [Awasthi, S., et al. (2000) Biochemistry 39, 9327-9334]. RLIP76 overexpressed in human cells or transformed E. coli undergoes proteolysis to yield several fragments, including two prominent peptides, N-RLIP76(1-367) and C-RLIP76(410-655), from the N- and C-terminal domains, respectively. To investigate whether the fragmentation of RLIP76 has any relevance to its transport function, we have studied the characteristics of these two peptide fragments. Recombinant N-RLIP76(1-367) and C-RLIP76(410-655) were purified from overexpressing transformed E. coli. While N-RLIP76(1-367) readily underwent proteolysis, showing SDS-gel patterns similar to those of RLIP76, C-RLIP76(410-655) was resistant to such degradation. Both N-RLIP76(1-367) and C-RLIP76(410-655) had ATPase activity (K(m) for ATP, 2.5 and 2.0 mM, respectively) which was stimulated by DNP-SG, DOX, and colchicine (COL). ATP binding to both peptides was confirmed by photoaffinity labeling with 8-azido-ATP that was increased in the presence of compounds that stimulated their ATPase activity. Photoaffinity labeling was also increased in the presence of vanadate, indicating trapping of a reaction intermediate in the ATP binding site. The ATP binding sites in N-RLIP76(1-367) and C-RLIP76(410-655) were identified to be (69)GKKKGK(74) and (418)GGIKDLSK(425), respectively. Mutation of K(74) and K(425) to M residues, in N-RLIP76(1-367) and C-RLIP76(410-655), respectively, abrogated their ATPase activity as well as azido-ATP labeling. Proteoliposomes reconstituted with either N-RLIP76(1-367) or C-RLIP76(410-655) alone did not catalyze ATP-dependent transport of DOX or COL. However, proteoliposomes reconstituted with a mixture of N-RLIP76(1-367) and C-RLIP76(410-655) mediated such transport. Proteoliposomes reconstituted with the mixture of mutant peptides lacking ATPase activity did not exhibit transport activity. Present studies have identified the ATP binding sites in RLIP76, and show that DOX and COL transport can be reconstituted by two fragments of RLIP76.  相似文献   

16.
Askerlund P  Evans DE 《Plant physiology》1992,100(4):1670-1681
Purification and functional reconstitution of a calmodulin-stimulated Ca2+-ATPase from cauliflower (Brassica oleracea L.) is described. Activity was purified about 120-fold from a microsomal fraction using calmodulin-affinity chromatography. The purified fraction showed a polypeptide at 115 kD, which formed a phosphorylated intermediate in the presence of Ca2+, together with a few polypeptides with lower molecular masses that were not phosphorylated. The ATPase was reconstituted into liposomes by 3-([cholamidopropyl]-dimethylammonio-)1-propanesulfonate (CHAPS) dialysis. The proteoliposomes showed ATP-dependent Ca2+ uptake and ATPase activity, both of which were stimulated about 4-fold by calmodulin. Specific ATPase activity was about 5 μmol min−1 (mg protein)−1, and the Ca2+/ATP ratio was 0.1 to 0.5 when the ATPase was reconstituted with entrapped oxalate. The purified, reconstituted Ca2+-ATPase was inhibited by vanadate and erythrosin B, but not by cyclopiazonic acid and thapsigargin. Activity was supported by ATP (100%) and GTP (50%) and had a pH optimum of about 7.0. The effect of monovalent and divalent cations (including Ca2+) on activity is described. Assay of membranes purified by two-phase partitioning indicated that approximately 95% of the activity was associated with intracellular membranes, but only about 5% with plasma membranes. Sucrose gradient centrifugation suggests that the endoplasmic reticulum is the major cellular location of calmodulin-stimulated Ca2+-pumping ATPase in Brassica oleracea inflorescences.  相似文献   

17.
Earlier studies from our laboratories have shown that RLIP76, a previously described Ral-binding GTPase activating protein (Jullien-Flores et al., 1995, J. Biol. Chem. 270: 22473), is identical with the xenobiotic transporter DNP-SG ATPase, and can catalyze ATP-dependent transport of glutathione-conjugates as well as doxorubin (Awasthi et al., 2000, Biochemistry, 39: 9327). We have now reconstituted purified bacterially expressed RLIP76 in proteoliposomes, and have studied ATP-dependent uptake of the glutathione conjugate of 4-hydroxynonenal (GS-HNE) by these vesicles. Results of these studies show that RLIP76 reconstituted in proteoliposomes catalyzes ATP-dependent transport of GS-HNE against a concentration gradient. The transport of GS-HNE is saturable with respect to ATP as well as GS-HNE with K(m) values of 1.4mM and 2.5 microM, respectively. These studies demonstrate that RLIP76 mediates active transport of GS-HNE, and are consistent with our previous work showing that RLIP76-mediated efflux of GS-HNE regulates the intracellular concentration of 4-HNE and thereby affects 4-HNE mediated signaling.  相似文献   

18.
本文研究了山莨菪碱对肌质网Ca~(2 )-ATPase活力及转运功能的影响.对膜结合及分离纯化的Ca~(2 )-ATPase,体系中加入不同量的药物都对酶的活力及转运效率无明显影响.当将药物与肌质网或纯化的Ca~(2 )-ATPase预保温后,山莨菪碱则表现出在低浓度使酶激活,高浓度抑制酶的活力.但都导致SRCa~(2 )转运效率降低.对用保温,超声及去污剂透析三种不同方法重建的脂酶体,结果表明:山莨菪碱通过作用于膜脂后,在低浓度激活Ca~(2 )-ATPase、高浓度抑制酶的活力.比较药物对不同类型纯磷脂重建的脂酶体活性的影响发现:山莨菪碱对含有酸性磷脂的脂酶体Ca~(2 )-ATPase的作用较不含酸性磷脂的要大.  相似文献   

19.
The overexpression of the P-glycoprotein, theMDR1 gene product, has been linked to the development of resistance to multiple cytotoxic natural product anticancer drugs in certain cancers and cell lines derived from tumors. P-glycoprotein, a member of the ATP-binding cassette (ABC) superfamily of transporters, is believed to function as an ATP-dependent drug efflux pump with broad specificity for chemically unrelated hydrophobic compounds. We review here recent studies on the purification and reconstitution of P-glycoprotein to elucidate the mechanism of drug transport. P-glycoprotein from the human carcinoma multidrug resistant cell line, KB-V1, was purified by sequential chromatography on anion exchange followed by a lectin (wheat germ agglutinin) column. Proteoliposomes reconstituted with pure protein exhibited high levels of drug-stimulated ATPase activity as well as ATP-dependent [3H]vinblastine accumulation. Both the ATPase and vinblastine transport activities of the reconstituted P-glycoprotein were inhibited by vanadate. In addition, the vinblastine transport was inhibited by verapamil and daunorubicin. These studies provide strong evidence that the human P-glycoprotein functions as an ATP-dependent drug transporter. The development of the reconstitution system and the availability of recombinant protein in large amounts due to recent advances in overexpression of P-glycoprotein in a heterologous expression system should facilitate a better understanding of the function of this novel protein.  相似文献   

20.
Howard EM  Roepe PD 《Biochemistry》2003,42(12):3544-3555
Human multidrug resistance (hu MDR 1) cDNA was fused to a P. shermanii transcarboxylase biotin acceptor domain (TCBD), and the fusion protein was heterologously overexpressed at high yield in K(+)-uptake deficient Saccharomyces cerevisiae yeast strain 9.3, purified by avidin-biotin chromatography, and reconstituted into proteoliposomes (PLs) formed with Escherichia coli lipid. As measured by pH- dependent ATPase activity, purified, reconstituted, biotinylated MDR-TCBD protein is fully functional. Dodecyl maltoside proved to be the most effective detergent for the membrane solubilization of MDR-TCBD, and various salts were found to significantly affect reconstitution into PLs. After extensive analysis, we find that purified reconstituted MDR-TCBD protein does not catalyze measurable H(+) pumping in the presence of ATP. In the presence of physiologic [ATP], K(+)/Na(+) diffusion potentials monitored by either anionic oxonol or cationic carbocyanine are easily established upon addition of valinomycin to either control or MDR-TCBD PLs. However, in the absence of ATP, although control PLs still maintain easily measurable K(+)/Na(+) diffusion potentials upon addition of valinomycin, MDR-TCBD PLs do not. Dissipation of potential by MDR-TCBD is clearly [ATP] dependent and also appears to be Cl(-) dependent, since replacing Cl(-) with equimolar glutamate restores the ability of MDR-TCBD PLs to form a membrane potential in the absence of physiologic [ATP]. The data are difficult to reconcile with models that might propose ATP-catalyzed "pumping" of the fluorescent probes we use and are more consistent with electrically passive anion transport via MDR-TCBD protein, but only at low [ATP]. These observations may help to resolve the confusing array of data related to putative ion transport by hu MDR 1 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号