首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND INFORMATION: Mercurials inhibit AQPs (aquaporins), and site-directed mutagenesis has identified Cys(189) as a site of the mercurial inhibition of AQP1. On the other hand, AQP4 has been considered to be a mercury-insensitive water channel because it does not have the reactive cysteine residue corresponding to Cys(189) of AQP1. Indeed, the osmotic water permeability (P(f)) of AQP4 expressed in various types of cells, including Xenopus oocytes, is not inhibited by HgCl2. To examine the direct effects of mercurials on AQP4 in a proteoliposome reconstitution system, His-tagged rAQP4 [corrected] (rat AQP4) M23 was expressed in Saccharomyces cerevisiae, purified with an Ni2+-nitrilotriacetate affinity column, and reconstituted into liposomes with the dilution method. RESULTS: The water permeability of AQP4 proteoliposomes with or without HgCl2 was measured with a stopped-flow apparatus. Surprisingly, the P(f) of AQP4 proteoliposomes was significantly decreased by 5 microM HgCl2 within 30 s, and this effect was completely reversed by 2-mercaptoethanol. The dose- and time-dependent inhibitory effects of Hg2+ suggest that the sensitivity to mercury of AQP4 is different from that of AQP1. Site-directed mutagenesis of six cysteine residues of AQP4 demonstrated that Cys(178), which is located at loop D facing the intracellular side, is a target responding to Hg2+. We confirmed that AQP4 is reconstituted into liposome in a bidirectional orientation. CONCLUSIONS: Our results suggest that mercury inhibits the P(f) of AQP4 by mechanisms different from those for AQP1 and that AQP4 may be gated by modification of a cysteine residue in cytoplasmic loop D.  相似文献   

2.
3.
Traumatic brain injury (TBI) is one of the main concerns worldwide as there is still no comprehensive therapeutic intervention. Astrocytic water channel aquaporin-4 (AQP-4) system is closely related to the brain edema, water transport at blood-brain barrier (BBB) and astrocyte function in the central nervous system (CNS). Minocycline, a broad-spectrum semisynthetic tetracycline antibiotic, has shown anti-inflammation, anti-apoptotic, vascular protection and neuroprotective effects on TBI models. Here, we tried to further explore the underlying mechanism of minocycline treatment for TBI, especially the relationship of minocycline and AQP4 during TBI treatment. In present study, we observed that minocycline efficaciously reduces the elevation of AQP4 in TBI mice. Furthermore, minocycline significantly reduced neuronal apoptosis, ameliorated brain edema and BBB disruption after TBI. In addition, the expressions of tight junction protein and astrocyte morphology alteration were optimized by minocycline administration. Similar results were found after treating with TGN-020 (an inhibitor of AQP4) in TBI mice. Moreover, these effects were reversed by cyanamide (CYA) treatment, which notably upregulated AQP4 expression level in vivo. In primary cultured astrocytes, small-interfering RNA (siRNA) AQP4 treatment prevented glutamate-induced astrocyte swelling. To sum up, our study suggests that minocycline improves the functional recovery of TBI through reducing AQP4 level to optimize BBB integrity and astrocyte function, and highlights that the AQP4 may be an important therapeutic target during minocycline treating for TBI.  相似文献   

4.
Purification and functional characterization of aquaporin-8   总被引:11,自引:0,他引:11  
BACKGROUND INFORMATION: Aquaporins (AQPs) are a family of channels permeable to water and some small solutes. In mammals, 13 members (AQP0-AQP12) have been found. AQP8 is widely distributed in many tissues and organs. Previous studies in frog oocytes suggested that AQP8 was permeable to water, urea and ammonium, but no direct characterization had yet been reported. RESULTS: We expressed recombinant rAQP8, hAQP8 and mAQP8 (rat, human and mouse AQP8 respectively) in yeast, purified the proteins to homogeneity and reconstituted them into proteoliposomes. Although showing high sequence similarity, AQP8 proteins from the three species had to be purified with different detergents prior to reconstitution. In stopped-flow studies, all three AQP8 proteoliposomes showed water permeability, which was inhibited by mercuric chloride and rescued by 2-mercaptoethanol. rAQP8 and hAQP8 proteoliposomes did not transport glycerol or urea but were permeable to formamide, which was also inhibited by mercuric chloride. In the oocyte transport assay, hAQP8-injected oocytes showed significantly higher [14C]methylammonium uptake than water-injected oocytes. CONCLUSIONS: In the present study, we successfully purified rAQP8, hAQP8 and mAQP8 proteins and characterized their biochemical and biophysical properties. All three AQP8 proteins transport water. rAQP8 and hAQP8 are not permeable to urea or glycerol. Moreover, hAQP8 is permeable to ammonium analogues (formamide and methylammonium). Our results suggest that AQP8 may transport ammonium in vivo and physiologically contribute to the acid-base equilibrium.  相似文献   

5.
6.
The supramolecular assembly of aquaporin-4 (AQP4) in orthogonal arrays of particles (OAPs) involves N-terminus interactions of the M23-AQP4 isoform. We found AQP4 OAPs in cell plasma membranes but not in endoplasmic reticulum (ER) or Golgi, as shown by: (i) native gel electrophoresis of brain and AQP4-transfected cells, (ii) photobleaching recovery of green fluorescent protein-AQP4 chimeras in live cells and (iii) freeze-fracture electron microscopy (FFEM). We found that AQP4 OAP formation in plasma membranes, but not in the Golgi, was not related to AQP4 density, pH, membrane lipid composition, C-terminal PDZ domain interactions or α-syntrophin expression. Remarkably, however, fusion of AQP4-containing Golgi vesicles with (AQP4-free) plasma membrane vesicles produced OAPs, suggesting the involvement of plasma membrane factor(s) in AQP4 OAP formation. In investigating additional possible determinants of OAP assembly we discovered membrane curvature-dependent OAP assembly, in which OAPs were disrupted by extrusion of plasma membrane vesicles to ~110 nm diameter, but not to ~220 nm diameter. We conclude that AQP4 supramolecular assembly in OAPs is a post-Golgi phenomenon involving plasma membrane-specific factor(s). Post-Golgi and membrane curvature-dependent OAP assembly may be important for vesicle transport of AQP4 in the secretory pathway and AQP4-facilitated astrocyte migration, and suggests a novel therapeutic approach for neuromyelitis optica.  相似文献   

7.
Gao J  Wang X  Chang Y  Zhang J  Song Q  Yu H  Li X 《Analytical biochemistry》2006,350(2):165-170
Water channel proteins, known as aquaporins, are transmembrane proteins that mediate osmotic water permeability. In a previous study, we found that acetazolamide could inhibit osmotic water transportation across Xenopus oocytes by blocking the function of aquaporin-1 (AQP1). The purpose of the current study was to confirm the effect of acetazolamide on water osmotic permeability using the human embryonic kidney 293 (HEK293) cells transfected with pEGFP/AQP1 and to investigate the interaction between acetazolamide and AQP1. The fluorescence intensity of HEK293 cells transfected with pEGFP/AQP1, which corresponds to the cell volume when the cells swell in a hyposmotic solution, was recorded under confocal laser fluorescence microscopy. The osmotic water permeability was assessed by the change in the ratio of cell fluorescence to certain cell area. Acetazolamide, at concentrations of 1 and 10muM, inhibited the osmotic water permeability in HEK293 cells transfected with pEGFP/AQP1. The direct binding between acetazolamide and AQP1 was detected by surface plasmon resonance. AQP1 was prepared from rat red blood cells and immobilized on a CM5 chip. The binding assay showed that acetazolamide could directly interact with AQP1. This study demonstrated that acetazolamide inhibited osmotic water permeability through interaction with AQP1.  相似文献   

8.
The water permeability of aquaporins (AQPs) varies by more than an order of magnitude even though the pore structure, geometry, as well as the channel lining residues are highly conserved. However, channel gating by pH, divalent ions or phosphorylation was only shown for a minority of AQPs. Structural and in silico indications of water flux modulation by flexible side chains of channel lining residues have not been experimentally confirmed yet. Hence, the aquaporin “open state” is still considered to be a continuously open pore with water molecules permeating in a single‐file fashion. Using protein mutations outside the selectivity filter in the aqua(glycerol)facilitator GlpF of Escherichia coli we, to the best of our knowledge, for the first time, modulate the position of the highly conserved Arg in the selectivity filter. This in turn enhances or reduces the unitary water permeability of GlpF as shown in silico by molecular dynamics (MD) simulations and in vitro with purified and reconstituted GlpF. This finding suggests that AQP water permeability can indeed be regulated by lipid bilayer asymmetry and the transmembrane potential. Strikingly, our long‐term MD simulations reveal that not only the conserved Arg in the selectivity filter, but the position and dynamics of multiple other pore lining residues modulate water passage through GlpF. This finding is expected to trigger a wealth of future investigations on permeability and regulation of AQPs among others with the aim to tune water permeability for biotechnological applications.  相似文献   

9.
10.
Aquaporins (AQPs) are integral membrane channels that facilitate the bidirectional transport of water and sometimes other small solutes across biological membranes. AQPs are important in mediating environmental adaptations in mosquitoes and are considered as a novel target for the development of effective insecticides against mosquitoes. Here, we expressed Aedes aegypti AQP6 ( AaAQP6) in human embryonic kidney (HEK) 293 cells and analyzed the water permeability by a conventional swelling assay, that is, a real‐time change in cell size corresponding to the cell swelling induced by hyposmotic solution. The swelling assay revealed that AaAQP6 is a mercury‐sensitive water channel. Gene expression studies showed that AaAQP6 is highly expressed in the pupae than other developmental stages. Heterologous expression of AaAQP6 in HEK cell was mainly observed intracellularly suggesting AaAQP6 possibly could be a subcellular water channel and may play an osmoregulatory function in the pupae of A. aegypti.  相似文献   

11.
12.
Targeted positioning of the water channel AQP2 (aquaporin-2) strictly regulates body water homoeostasis. Trafficking of AQP2 to the apical membrane is critical for the reabsorption of water in renal collecting ducts. In addition to the cAMP-mediated effect of vasopressin on AQP2 trafficking to the apical membrane, other signalling cascades can also induce this sorting. Recently, AQP2-binding proteins which could regulate this trafficking have been discovered; SPA-1 (signal-induced proliferation-associated gene-1), a GAP (GTPase-activating protein) for Rap1, and the cytoskeletal protein actin. This review summarizes recent advances related to the trafficking mechanisms of AQP2.  相似文献   

13.
Vasopressin-regulated water reabsorption through the water channel aquaporin-2 (AQP2) in renal collecting ducts maintains body water homeostasis. Vasopressin activates PKA, which phosphorylates AQP2, and this phosphorylation event is required to increase the water permeability and water reabsorption of the collecting duct cells. It has been established that the phosphorylation of AQP2 induces its apical membrane insertion, rendering the cell water-permeable. However, whether this phosphorylation regulates the water permeability of this channel still remains unclear. To clarify the role of AQP2 phosphorylation in water permeability, we expressed recombinant human AQP2 in Escherichia coli, purified it, and reconstituted it into proteoliposomes. AQP2 proteins not reconstituted into liposomes were removed by fractionating on density step gradients. AQP2-reconstituted liposomes were then extruded through polycarbonate filters to obtain unilamellar vesicles. PKA phosphorylation significantly increased the osmotic water permeability of AQP2-reconstituted liposomes. We then examined the roles of AQP2 phosphorylation at Ser-256 and Ser-261 in the regulation of water permeability using phosphorylation mutants reconstituted into proteoliposomes. The water permeability of the non-phosphorylation-mimicking mutant S256A-AQP2 and non-phosphorylated WT-AQP2 was similar, and that of the phosphorylation-mimicking mutant S256D-AQP2 and phosphorylated WT-AQP2 was similar. The water permeability of S261A-AQP2 and S261D-AQP2 was similar to that of non-phosphorylated WT-AQP2. This study shows that PKA phosphorylation of AQP2 at Ser-256 enhances its water permeability.  相似文献   

14.
Mechanisms that regulate water channels in the plant plasma membrane (PM) were investigated in Arabidopsis suspension cells. Cell hydraulic conductivity was measured with a cell pressure probe and was reduced 4-fold as compared to control values when calcium was added in the pipette and in bathing solution. To assess the significance of these effects in vitro, PM vesicles were isolated by aqueous two-phase partitioning and their water transport properties were characterized by stopped-flow spectrophotometry. Membrane vesicles isolated in standard conditions exhibited reduced water permeability (P(f)) together with a lack of active water channels. In contrast, when prepared in the presence of chelators of divalent cations, PM vesicles showed a 2.3-fold higher P(f) and active water channels. Furthermore, equilibration of purified PM vesicles with divalent cations reduced their P(f ) and water channel activity down to the basal level of membranes isolated in standard conditions. Ca2+ was the most efficient with a half-inhibition of P(f) at 50-100 microM free Ca2+. Water transport in purified PM vesicles was also reversibly blocked by H+, with a half-inhibition of P(f )at pH 7.2-7.5. Thus, both Ca2+ and H+ contribute to a membrane-delimited switch from active to inactive water channels that may allow coupling of water transport to cell signalling and metabolism.  相似文献   

15.
Background information. AQPs (aquaporins) are water channel proteins that are expressed in almost all living things. In mammalians, 13 members of AQPs (AQP0–12) have been identified so far. AQP5 is known to be expressed mostly in the exocrine cells, including the salivary gland acinar cells. A naturally occurring point mutation (G308A, Gly103 > Asp103) was earlier found in the rat AQP5 gene [Murdiastuti, Purwanti, Karabasil, Li, Yao, Akamatsu, Kanamori and Hosoi (2006) Am. J. Physiol. 291 , G1081–G1088]; in this mutant, the rate of initial saliva secretion under stimulated and unstimulated conditions is less than that for the wt (wild‐type) animals. Results. Here the mutant molecule was characterized in detail. Using the Xenopus oocyte system, we demonstrated the mutant AQP5 to have water permeability almost the same as that of the wt molecule. Mutant and wt AQP5s, tagged with GFP (green fluorescent protein; GFP‐AQP5s) and expressed in polarized MDCK‐II (Madin—Darby canine kidney II) cells, first appeared in the vesicular structure(s) in the cytoplasm, and were translocated to the upper plasma membrane or apical membrane during cultivation, with the mutant GFP‐AQP5 being translocated less efficiently. Thapsigargin and H‐89 both induced translocation in vitro of either molecule, whereas colchicine inhibited this activity; the fraction of cells showing apical localization of mutant GFP‐AQP5 was less than that showing that of the wt molecule under any of the experimental conditions used. In the mutant SMG (submandibular gland) tissue, localization of AQP5 in the apical membrane of acinar cells was extremely reduced. Vesicular structures positive for AQP5 and present in the cytoplasm of the acinar cells were co‐localized with LAMP2 (lysosome‐associated membrane protein 2) or cathepsin D in the mutant gland, whereas such co‐localizations were very rare in the wt gland, suggesting that the mutant molecules largely entered lysosomes for degradation. Conclusion. Replacement of highly conserved hydrophobic Gly103 with strongly hydrophilic Asp103 in rat AQP5, though it did not affect water permeability, may possibly have resulted in less efficient membrane trafficking and increased lysosomal degradation, leading to its lower expression in the apical membrane of the acinar cells in the SMG.  相似文献   

16.
17.
Aquaporin-4, present in ependymal cells, in glia limiting and abundantly in pericapillary astrocyte foot processes, and aquaporin-1, expressed in choroid plexus epithelial cells, play an important role in cerebrospinal fluid production and may be involved in the pathophysiology of age-dependent hydrocephalus. The finding that brain aquaporins expression is regulated by low oxygen tension led us to investigate how hypoxia and elevated levels of cerebral aquaporins may result in an increase in cerebrospinal fluid production that could be associated with a hydrocephalic condition. Here we have explored, in young and aged mice exposed to hypoxia, whether aquaporin-4 and aquaporin-1 participate in the development of age-related hydrocephalus. Choroid plexus, striatum, cortex and ependymal tissue were analyzed separately both for mRNA and protein levels of aquaporins. Furthermore, parameters such as total ventricular volume, intraventricular pressure, cerebrospinal fluid outflow rate, ventricular compliance and cognitive function were studied in wild type, aquaporin-1 and aquaporin-4 knock-out animals subjected to hypoxia or normoxia. Our data demonstrate that hypoxia is involved in the development of age-related hydrocephalus by a process that depends on aquaporin-4 channels as a main route for cerebrospinal fluid movement. Significant increases in aquaporin-4 expression that occur over the course of animal aging, together with a reduced cerebrospinal fluid outflow rate and ventricular compliance, contribute to produce more severe hydrocephalus related to hypoxic events in aged mice, with a notable impairment in cognitive function. These results indicate that physiological events and/or pathological conditions presenting with cerebral hypoxia/ischemia contribute to the development of chronic adult hydrocephalus.  相似文献   

18.
A Role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle   总被引:4,自引:0,他引:4  
Arginine-vasopressin (AVP) regulates water reabsorption in renal collecting duct principal cells. Its binding to Gs-coupled vasopressin V2 receptors increases cyclic AMP (cAMP) and subsequently elicits the redistribution of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane (AQP2 shuttle), thereby facilitating water reabsorption from primary urine. The AQP2 shuttle is a paradigm for cAMP-dependent exocytic processes. Using sections of rat kidney, the AQP2-expressing cell line CD8, and primary principal cells, we studied the role of the motor protein myosin Vb, its vesicular receptor Rab11, and the myosin Vb- and Rab11-binding protein Rab11-FIP2 in the AQP2 shuttle. Myosin Vb colocalized with AQP2 intracellularly in resting and at the plasma membrane in AVP-treated cells. Rab11 was found on AQP2-bearing vesicles. A dominant-negative myosin Vb tail construct and Rab11-FIP2 lacking the C2 domain (Rab11-FIP2-DeltaC2), which disrupt recycling, caused condensation of AQP2 in a Rab11-positive compartment and abolished the AQP2 shuttle. This effect was dependent on binding of myosin Vb tail and Rab11-FIP2-DeltaC2 to Rab11. In summary, we identified myosin Vb as a motor protein involved in AQP2 recycling and show that myosin Vb- and Rab11-FIP2-dependent recycling of AQP2 is an integral part of the AQP2 shuttle.  相似文献   

19.
Summary The diffusive water permeability (P d ) of the plasma membrane of proximal kidney tubule cells was measured using a1H-NMR technique. The values obtained for the exchange time (T ex) across the membrane were independent of the cytocrit and of the Mn2+ concentration (in the range 2.5 to 5mm). At 25°C the calculatedP d value was (per cm2 of outer surface area without taking into account membrane invaginations) 197±17 m/sec. This value equals 22.3±1.9 m/sec when the invaginations are taken into account. Cell exposure to 2.5mm parachloromercuribenzenesulfonic acid,pCMBS, (for 20 to 35 min) reducedP d to 45% of its control value. Fivemm dithiothreitol, DTT, reverted this effect. The activation energy for the diffusive water flux was 5.2±1.0 kcal/mol under control conditions. It increased to 9.1±2.2 kcal/mol in the presence of 2.5mm pCMBS. Using our previous values for the osmotic water permeability (P os) in proximal straight tubular cells theP os/P d ratio equals 18±1, under control conditions, and 3.2±0.3 in the presence ofpCMBS. These experimental results indicate the presence of pathways for water, formed by proteins, crossing these membranes, which are closed bypCMBS. Assuming laminar flow (within the pore), fromP os/P d of 13 to 18 an unreasonably large pore radius of 12 to 15 Å is calculated which would not hinder cell entry of known extracellular markers. Alternatively, for a single-file pore, 11 to 20 would be the number of water molecules which would be in tandem inside the pore. The water permeability remaining in the presence ofpCMBS indicates water permeation through the lipid bilayer. There are similarities between these results and those obtained in human red blood cells and in the apical cell membrane of the toad urinary bladder.  相似文献   

20.
BACKGROUND INFORMATION: Phenotype analysis has demonstrated that AQP3 (aquaporin 3) null mice are polyuric and manifest a urinary concentration defect. In the present study, we report that deletion of AQP3 is also associated with an increased urinary sodium excretion. To investigate further the mechanism of the decreased urinary concentration and significant natriuresis, we examined the segmental and subcellular localization of collecting duct AQPs [AQP2, p-AQP2 (phosphorylated AQP2), AQP3 and AQP4], ENaC (epithelial sodium channel) subunits and Na,K-ATPase by immunoperoxidase and immunofluorescence microscopy in AQP3 null (-/-), heterozygous (+/-) mice, wild-type and unrelated strain of normal mice. RESULTS: The present study confirms that AQP3 null mice exhibit severe polyuria and polydipsia and demonstrated that they exhibit increased urinary sodium excretion. In AQP3 null mice, there is a marked down-regulation of AQP2 and p-AQP2 both in CNT (connecting tubule) and CCD (cortical collecting duct). Moreover, AQP4 is virtually absent from CNT and CCD in AQP3 null mice. Basolateral AQP2 was virtually absent from AQP3 null mice and normal mice in contrast with rat. Thus the above results demonstrate that no basolateral AQPs are expressed in CNT and CCD of AQP3 null mice. However, in the medullary-collecting ducts, there is no difference in the expression levels and subcellular localization of AQP2, p-AQP2 and AQP4 between AQP3 +/- and AQP3 null mice. Moreover, a striking decrease in the immunolabelling of the alpha1 subunit of Na,K-ATPase was observed in CCD in AQP3 null mice, whereas a medullary-collecting duct exhibited normal labelling. Immunolabelling of all the ENaC subunits in the collecting duct was comparable between the two groups. CONCLUSIONS: The results improve the possibility that the severe urinary concentrating defect in AQP3 null mice may in part be caused by the decreased expression of AQP2, p-AQP2 and AQP4 in CNT and CCD, whereas the increased urinary sodium excretion may in part be accounted for by Na,K-ATPase in CCD in AQP3 null mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号