首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
I M Saxena  K Kudlicka  K Okuda    R M Brown  Jr 《Journal of bacteriology》1994,176(18):5735-5752
The synthesis of an extracellular ribbon of cellulose in the bacterium Acetobacter xylinum takes place from linearly arranged, membrane-localized, cellulose-synthesizing and extrusion complexes that direct the coupled steps of polymerization and crystallization. To identify the different components involved in this process, we isolated an Acetobacter cellulose-synthesizing (acs) operon from this bacterium. Analysis of DNA sequence shows the presence of three genes in the acs operon, in which the first gene (acsAB) codes for a polypeptide with a molecular mass of 168 kDa, which was identified as the cellulose synthase. A single base change in the previously reported DNA sequence of this gene, resulting in a frameshift and synthesis of a larger protein, is described in the present paper, along with the sequences of the other two genes (acsC and acsD). The requirement of the acs operon genes for cellulose production was determined using site-determined TnphoA/Kanr GenBlock insertion mutants. Mutant analysis showed that while the acsAB and acsC genes were essential for cellulose production in vivo, the acsD mutant produced reduced amounts of two cellulose allomorphs (cellulose I and cellulose II), suggesting that the acsD gene is involved in cellulose crystallization. The role of the acs operon genes in determining the linear array of intramembranous particles, which are believed to be sites of cellulose synthesis, was investigated for the different mutants; however, this arrangement was observed only in cells that actively produced cellulose microfibrils, suggesting that it may be influenced by the crystallization of the nascent glucan chains.  相似文献   

2.
Three sets of cellulose synthase genes were cloned from a cellulose-producing bacterium Acetobacter xylinum JCM 7664. One set of genes (bcsAI/bcsBI/bcsCI/bcsDI) were highly conserved with the well-established type I genes in other strains of A. xylinum, while the other two (bcsABII-A, bcsABII-B) were homologous to the known type II (acsAII). Unexpectedly, they were immediately followed by a gene cluster of bcsX/bcsY/bcsCII/ORF569, likely forming an operon. Western blotting demonstrated that the BcsY protein accumulated in cells. Since BcsY showed striking similarities to a number of membrane-bound transacylases, it was hypothesized that the type II cellulose synthase produces acylated cellulose, which might be anchored on the cytoplasmic membrane. An insertion sequence of IS1380-type was found just upstream of the one type II gene (bcsABII-B), suggestive of nonfunctioning.  相似文献   

3.
The beta-glucosidase gene (bglxA) was cloned from the genomic DNA of Acetobacter xylinum ATCC 23769 and its nucleotide sequence (2200 bp) was determined. This bglxA gene was present downstream of the cellulose synthase operon and coded for a polypeptide of molecular mass 79 kDa. The overexpression of the beta-glucosidase in A. xylinum caused a tenfold increase in activity compared to the wild-type strain. In addition, the action pattern of the enzyme was identified as G3ase activity. The deduced amino acid sequence of the bglxA gene showed 72.3%, 49.6%, and 45.1% identity with the beta-glucosidases from A. xylinum subsp. sucrofermentans, Cellvibrio gilvus, and Mycobacterium tuberculosis, respectively. Based on amino acid sequence similarities, the beta-glucosidase (BglxA) was assigned to family 3 of the glycosyl hydrolases.  相似文献   

4.
An insertion sequence (IS) element, IS1031, caused insertions associated with spontaneous cellulose deficient (Cel-) mutants of Acetobacter xylinum ATCC 23769. The element was discovered during hybridization analysis of DNAs from Cel- mutants of A. xylinum ATCC 23769 with pAXC145, an indigenous plasmid from a Cel- mutant of A. xylinum NRCC 17005. An IS element, IS1031B, apparently identical to IS1031, was identified on pAXC145. IS1031 is about 950 bp. DNA sequencing showed that the two elements had identical termini with inverted repeats of 24 bp containing two mismatches and that they generated 3-bp target sequence duplications. The A. xylinum ATCC 23769 wild type carries seven copies of IS1031. Southern hybridization showed that 8 of 17 independently isolated spontaneous Cel- mutants of ATCC 23769 contained insertions of an element homologous to IS1031. Most insertions were in unique sites, indicating low insertion specificity. Significantly, two insertions were 0.5 kb upstream of a recently identified cellulose synthase gene. Attempts to isolate spontaneous cellulose-producing revertants of these two Cel- insertion mutants by selection in static cultures were unsuccessful. Instead, pseudorevertants that made waxlike films in the liquid-air interface were obtained. The two pseudorevertants carried new insertions of an IS1031-like element in nonidentical sites of the genome without excision of the previous insertions. Taken together, these results suggest that indigenous IS elements contribute to genetic instability in A. xylinum. The elements might also be useful as genetic tools in this organism and related species.  相似文献   

5.
A region of the chromosome of Agrobacterium tumefaciens 11 kb long containing two operons required for cellulose synthesis and a part of a gene homologous to the fixR gene of Bradyrhizobium japonicum has been sequenced. One of the cellulose synthesis operons contained a gene (celA) homologous to the cellulose synthase (bscA) gene of Acetobacter xylinum. The same operon also contained a gene (celC) homologous to endoglucanase genes from A. xylinum, Cellulomonas uda, and Erwinia chrysanthemi. The middle gene of this operon (celB) and both the genes of the other operon required for cellulose synthesis (celDE) showed no significant homology to genes contained in the databases. Transposon insertions showed that at least the last gene of each of these operons (celC and celE) was required for cellulose synthesis in A. tumefaciens.  相似文献   

6.
Cellulose biosynthesis and function in bacteria.   总被引:66,自引:1,他引:65       下载免费PDF全文
The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most evident for Acetobacter xylinum, polymerization and assembly appear to be tightly coupled. To date, only bacteria have been effectively studied at the biochemical and genetic levels. In A. xylinum, the cellulose synthase, composed of at least two structurally similar but functionally distinct subunits, is subject to a multicomponent regulatory system. Regulation is based on the novel nucleotide cyclic diguanylic acid, a positive allosteric effector, and the regulatory enzymes maintaining its intracellular turnover: diguanylate cyclase and Ca2(+)-sensitive bis-(3',5')-cyclic diguanylic acid (c-di-GMP) phosphodiesterase. Four genes have been isolated from A. xylinum which constitute the operon for cellulose synthesis. The second gene encodes the catalytic subunit of cellulose synthase; the functions of the other three gene products are still unknown. Exclusively an extracellular product, bacterial cellulose appears to fulfill diverse biological roles within the natural habitat, conferring mechanical, chemical, and physiological protection in A. xylinum and Sarcina ventriculi or facilitating cell adhesion during symbiotic or infectious interactions in Rhizobium and Agrobacterium species. A. xylinum is proving to be most amenable for industrial purposes, allowing the unique features of bacterial cellulose to be exploited for novel product applications.  相似文献   

7.
Abstract: 1,4-μ-Glucan synthase activity, but not 1,3-μ-glucan-synthase activity, from Saprolegnia monoica was stimulated by cyclic-diguanylic acid, an immediate activator of Acetobacter xylinum - cellulose synthase. This activator, which increased the V max without modifying the K m for UDP-glucose, was active on solubilized and partially purified enzymes. These results suggest that the fungal system shares a common regulatory mechanism with the bacterial system.  相似文献   

8.
A threading model of the Ralstonia eutropha polyhydroxyalkanoate (PHA) synthase was developed based on the homology to the Burkholderia glumae lipase, whose structure has been resolved by X-ray analysis. The lid-like structure in the model was discussed. In this study, various R. eutropha PHA synthase mutants were generated employing random as well as site-specific mutagenesis. Four permissive mutants (double and triple mutations) were obtained from single gene shuffling, which showed reduced activity and whose mutation sites mapped at variable surface-exposed positions. Six site-specific mutations were generated in order to identify amino acid residues which might be involved in substrate specificity. Replacement of residues T323 (I/S) and C438 (G), respectively, which are located in the core structure of the PHA synthase model, abolished PHA synthase activity. Replacement of the two amino acid residues Y445 (F) and L446 (K), respectively, which are located at the surface of the protein model and adjacent to W425, resulted in reduced activity without changing substrate specificity and indicating a functional role of these residues. The E267K mutant exhibited only slightly reduced activity with a surface-exposed mutation site. Four site-specific deletions were generated to evaluate the role of the C-terminus and variant amino acid sequence regions, which link highly conserved regions. Deleted regions were D281-D290, A372-C382, E578-A589 and V585-A589 and the respective PHA synthases showed no detectable activity, indicating an essential role of the variable C-terminus and the linking regions between conserved blocks 2 and 3 as well as 3 and 4. Moreover, the N-terminal part of the class II PHA synthase (PhaC(Pa)) from Pseudomonas aeruginosa and the C-terminal part of the class I PHA synthase (PhaC(Re)) from R. eutropha were fused, respectively, resulting in three fusion proteins with no detectable in vivo activity. However, the fusion protein F1 (PhaC(Pa)-1-265-PhaC(Re)-289-589) showed 13% of wild type in vitro activity with the fusion point located at a surface-exposed loop region.  相似文献   

9.
In vivo random mutagenesis of the polyhydroxyalkanoate (PHA) synthase gene from Aeromonas punctata was performed employing the mutator strain Escherichia coli XL1-Red. About 200,000 mutants were screened on Nile red-containing medium and five mutants with enhanced fluorescence were selected. Four of these mutants exhibited enhanced in vivo and in vitro PHA synthase activity. Mutant M1, which carried the single mutation F518I, showed a five-fold increase in specific PHA synthase activity, whereas the corresponding mediated PHA accumulation increased by 20%, as compared with the wild-type PHA synthase. Mutant M2, which carried the single mutation V214G, showed a two-fold increase in specific PHA synthase activity and PHA accumulation only increased by 7%. Overall, the in vitro activities of the overproducing mutants ranged from 1.1- to 5-fold more than the wild-type activity, whereas the amounts of accumulated PHA ranged over 107–126% of that of the wild type. Moreover, all mutants mediated synthesis of PHAs with an increased weight average molar mass, but the molar fractions of 3-hydroxybutyrate and 3-hydroxyhexanoate remained almost constant. In vivo random mutagenesis proved to be a versatile tool to isolate mutants exerting improved properties with respect to PHA biosynthesis. Electronic Publication  相似文献   

10.
To get a better insight into the relationship between cell wall integrity and pathogenicity of the fungus Botrytis cinerea, we have constructed chitin synthase mutants. A 620 bp class I chitin synthase gene fragment (Bcchs1) obtained by PCR amplification was used to disrupt the corresponding gene in the genome. Disruption of Bcchs1 occurred at a frequency of 8%. Nine independent mutants were obtained and the Bcchs1 mutant phenotype compared to that of transformants in which the gene was not disrupted. These disruption mutants were dramatically reduced in their in vitro Mg2+, Mn2+, and Co2+-dependent chitin synthase activity. Chitin content was reduced by 30%, indicating that Bcchs1p contributes substantially to cell wall composition. Enzymatic degradation by a cocktail of glucanases revealed cell wall weakening in the mutant. Bcchs1 was transcribed at a constant level during vegetative exponential growth, suggesting that it was necessary throughout hyphal development. Bcchs1 mutant growth was identical to undisrupted control transformant growth, however, the mutant exhibited reduced pathogenicity on vine leaves. It can be assumed that disruption of Bcchs1 leads to cell wall weakening which might slow down in planta fungal progression.  相似文献   

11.
About 14.5 kb of DNA fragments from Acetobacter xylinum ATCC23769 and ATCC53582 were cloned, and their nucleotide sequences were determined. The sequenced DNA regions contained endo-beta-1,4-glucanase, cellulose complementing protein, cellulose synthase subunit AB, C, D and beta-glucosidase genes. The results from a homology search of deduced amino acid sequences between A. xylinum ATCC23769 and ATCC53582 showed that they were highly similar. However, the amount of cellulose production by ATCC53582 was 5 times larger than that of ATCC23769 during a 7-day incubation. In A. xylinum ATCC53582, synthesis of cellulose continued after glucose was consumed, suggesting that a metabolite of glucose, or a component of the medium other than glucose, may be a substrate of cellulose. On the other hand, cell growth of ATCC23769 was twice that of ATCC53582. Glucose is the energy source in A. xylinum as well as the substrate of cellulose synthesis, and the metabolic pathway of glucose in both strains may be different. These results suggest that the synthesis of cellulose and the growth of bacterial cells are contradictory.  相似文献   

12.
An ORF2 gene located upstream of the cellulose synthase (bcs) operon of Acetobacter xylinum BPR2001 was disrupted and a mutant (M2-2) was constructed. In static cultivation, the parent strain produced a tough, colorless, and insoluble cellulose pellicle, whereas M2-2 culture produced a thin, yellow, and fragile pellicle. The results of X-ray diffraction and 13C solid-state NMR indicated that the product of M2-2 is a mixture of cellulose I, cellulose II, and amorphous cellulose. The cellulose I to cellulose II ratio of the mixture was evaluated from the signal areas of C6 to be about 1:2. Electron microscopy revealed that the product of M2-2 included ribbon-like cellulose and irregularly shaped particles attached to the ribbons. On the other hand, the mutant complemented with plasmid pSA-ORF2/k containing the ORF2 gene and BPR2001 produced only cellulose I. These results indicate that the ORF2 gene is involved in the production and crystallization of cellulose I microfibrils by this microorganism.  相似文献   

13.
AIMS: Gluconacetobacter xylinum is well known for its ability to produce large amounts of cellulose, however, little is known about its cell physiology. Our goal was to study the respiratory metabolism and components of the respiratory system of this bacterium in static cultures. To reach our goal, a medium formulation had to be designed to improve cell growth and cellulose production together with a novel method for the recovery of cells from cellulose pellicles. METHODS AND RESULTS: Successive modifications of a nutrient medium improved G. xylinum cell growth 4.5-fold under static culture conditions. A blender homogenization procedure for the releasing of cells from the cellulose matrix gave a high yield of cells recovered. Respiratory activities of purified cells were greatly stimulated by exogenous substrates and showed to be resistant to KCN. Unexpectedly, exogenous NADH was oxidized at high rates. Cytochromes a, b, c and d were identified after spectral analyses. CONCLUSIONS: Partial bioenergetic characterization of G. xylinum cells allowed us to propose a scheme for its respiratory system. In addition, the growth medium for biomass production and the procedure for the efficient recovery of cells from cellulose pellicles were significantly improved. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides the first-ever bioenergetic characterization of G. xylinum grown in static cultures. In addition, a novel methodology to obtain purified cells in suitable quantities for biochemical research is described.  相似文献   

14.
The citrate synthase activity of Acetobacter xylinum cells grown on glucose was the same as of cells grown on intermediates of the tricarboxylic acid cycle. The activity of citrate synthase in extracts is compatible with the overall rate of acetate oxidation in vivo. The enzyme was purified 47-fold from sonic extracts and its molecular weight was determined to be 280000 by gel filtration. It has an optimum activity at pH 8.4. Reaction rates with the purified enzyme were hyperbolic functions of both acetyl-CoA and oxaloacetate. The Km for acetyl-CoA is 18 mum and that for oxaloacetate 8.7 mum. The enzyme is inhibited by ATP according to classical kinetic patterns. This inhibition is competitive with respect to acetyl-CoA (Ki = 0.9 mM) and non-competitive with respect to oxaloacetate. It is not affected by changes in pH and ionic strength and is not relieved by an excess of Mg2+ ions. Unlike other Gram-negative bacteria, the A. xylinum enzyme is not inhibited by NADH, but is inhibited by high concentrations of NADPH. The activity of the enzyme varies with energy charge in a manner consistent with its role in energy metabolism. It is suggested that the flux through the tricarboxylic acid cycle in A. xylinum is regulated by modulation of citrate synthase activity in response to the energy state of the cells.  相似文献   

15.
Acetobacter xylinum NRRL B42 (NCIB 40123) produces both cellulose and a complex anionic branched heteropolysaccharide called acetan. Chemical mutagenesis was used to isolate stable cellulose-minus Acetobacter xylinum mutants. Further chemical mutagenesis of these cellulose-minus A. xylinum bacteria was used to select mutants which secrete polysaccharides which are variants of the acetan structure. Preparation, purification and characterization of these polysaccharides are described. Methylation analysis of the polysaccharide structure CR1/4 suggests that the polysaccharide has an acetan structure with a truncated sidechain terminating in glucuronic acid.  相似文献   

16.
G Brede  E Fjaervik    S Valla 《Journal of bacteriology》1991,173(21):7042-7045
The nucleotide sequence of the Acetobacter xylinum uridine diphosphoglucose pyrophosphorylase gene was determined; this is the first procaryotic uridine diphosphoglucose pyrophosphorylase gene sequence reported. The sequence data indicated that the gene product consists of 284 amino acids. This finding was consistent with the results obtained by expression analysis in vivo and in vitro in Escherichia coli.  相似文献   

17.
Acetobacter xylinum strains are known as very efficient producers of bacterial cellulose which, due to its unique properties, has great application potential. One of the most important problems faced during cellulose synthesis by these bacteria is generation of cellulose non-producing cells, which can appear under submerged culture conditions. The reasons of this remain unknown. These studies have been undertaken to compare at the molecular level wild-type, cellulose producing (Cel(+)) A. xylinum strains with Cel(-) forms of cellulose-negative phenotype. Comparison of protein profiles of both forms of A. xylinum by 2D electrophoresis allowed for the isolation of proteins which were produced exclusively by either Cel+ or Cel- cells. Sequences of peptides derived from these proteins were aligned with those of proteins deposited in databases. This analysis revealed that Cel(-) cells lacked two enzymes: phosphoglucomutase and glucose-1-phosphate uridylyltransferase, which generates UDP-glucose being the substrate for cellulose synthase. DNA was analyzed by ligation-mediated PCR carried out at low denaturation temperature (PCR-MP). Two DNA fragments of different thermal stability (218 and 217 bp) were obtained from the DNA of Cel(+) and Cel(-) forms, respectively. The only difference between these Cel(-) and Cel(+) DNA fragments is deletion of one T residue. Alignment of those two sequences with those deposited in the GenBank database revealed that similar fragments are present in the genomes of some bacterial cellulose producers and are located downstream from open reading frames (ORF) encoding phosphoglucomutase. The meaning of this observation is discussed.  相似文献   

18.
The alpha-mannosyltransferase AceA from Acetobacter xylinum belongs to the CaZY family 4 of retaining glycosyltransferases. We have identified a series of either highly conserved or invariant residues that are found in all family 4 enzymes as well as other retaining glycosyltransferases. These residues included Glu-287 and Glu-295, which comprise an EX(7)E motif and have been proposed to be involved in catalysis. Alanine replacements of each conserved residue were constructed by site-directed mutagenesis. The mannosyltransferase activity of each mutant was examined by both an in vitro transferase assay using recombinant mutant AceA expressed in Escherichia coli and by an in vivo rescue assay by expressing the mutant AceA in a Xanthomonas campestris gumH(-) strain. We found that only mutants K211A and E287A lost all detectable activity both in vitro and in vivo, whereas E295A retained residual activity in the more sensitive in vivo assay. H127A and S162A each retained reduced but significant activities both in vitro and in vivo. Secondary structure predictions of AceA and subsequent comparison with the crystal structures of the T4 beta-glucosyltransferase and MurG suggest that AceA Lys-211 and Glu-295 are involved in nucleotide sugar donor binding, leaving Glu-287 of the EX(7)E as a potential catalytic residue.  相似文献   

19.
EcoRII Methyltransferase (M.EcoRII) which methylates the second C in the sequence CCWGG (W = A/T) is autogenously regulated by binding to the 5' regulatory region of its gene. DNase I footprinting experiments demonstrated that purified M.EcoRII protected a 47-49 bp region of DNA immediately upstream of the ecoRIIM coding region. We have studied this interaction with mutants of the enzyme, in vitro by DNA binding and in vivo by investigating the repression in trans of expression of beta-galactosidase from an ecoRIIM-lacZ operon fusion. Two catalytically active mutants failed to repress expression of the fusion whereas catalytically inactive mutants had repressor activity. However, with one of the catalytically inactive mutants, C186S, in which the catalytic Cys was replaced with Ser, and which bound unmethylated CCWGG sequences, repression could only be demonstrated when those sequences in cellular DNA were methylated by supplying a cloned dcm gene in trans. In vitro binding of the DNA fragment containing the ecoRIIM regulatory region was detected only with the mutants that showed repressor activity, including C186S. Results indicate that down-regulation of the gene in vivo and binding to the promoter in vitro are not dependent on the catalytic properties of M.EcoRII. Mobility shift experiments with C186S also revealed that it could bind either the promoter or unmethylated CCWGG sites, but not both. We conclude that the concentration of unmethylated CCWGG sites controls expression from the ecoRIIM promoter.  相似文献   

20.
The chitin synthase of Saccharomyces is a plasma membrane-bound zymogen. Following proteolytic activation, the enzyme synthesizes insoluble chitin that has chain length and other physical properties similar to chitin found in bud scars. We isolated mutants lacking chitin synthase activity (chs1) and used these to clone CHS1. The gene has an open reading frame of 3400 bases and encodes a protein of 130 kd. The fission yeast S. pombe lacks chitin synthase and chitin. When a plasmid encoding a CHS1-lacZ fusion protein is introduced into S. pombe, both enzymatic activities are expressed in the same ratio as in S. cerevisiae, demonstrating that CHS1 encodes the structural gene of chitin synthase. Three CHS1 gene disruption experiments were performed. In all cases, strains with the disrupted gene have a recognizable phenotype, lack measurable chitin synthase activity in vitro but are viable, contain normal levels of chitin in vivo, and mate and sporulate efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号