首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clonal deletion in the thymus by apoptosis is involved in purging the immune system of self-reactive T lymphocytes (negative selection). Cysteine proteases (caspases) belonging to the CPP32 family are activated during this process. We have produced transgenic mice expressing baculovirus p35, a broad-range caspase inhibitor. Thymocytes from p35 transgenic mice were resistant in vitro to several apoptosis-inducing agents; this resistance correlated with the inhibition of CPP32-like activity. Negative selection in vivo of thymocytes triggered by two exogenous antigens, staphylococcal enterotoxin B superantigen and an antigenic peptide in the F5 T-cell receptor transgenic model, was specifically inhibited in p35 transgenic mice. Our results provide direct evidence for caspase involvement in negative selection during thymocyte development.  相似文献   

2.
Thymocytes fail to tolerize the developing T cell repertoire to self MHC class I (MHC I) Ags because transgenic (CD2Kb) mice expressing H-2Kb solely in lymphoid cell lineages reject skin grafts mismatched only for H-2Kb. In this study, we examined why thymocytes fail to tolerize the T cell repertoire to self MHC I Ags. The ability of CD2Kb mice to reject H-2Kb skin grafts was age dependent because CD2Kb mice older than 20 wk accepted skin grafts. T cells from younger CD2Kb mice proliferated, but did not develop cytotoxic functions in vitro in response to H-2Kb. Proliferative responses were dominated by H-2Kb-specific, CD4+ T cells rather than CD8+ T cells. Representative CD4+ T cell clones from CD2Kb mice were MHC II restricted and recognized processed H-2Kb. TCR transgenic mice were generated from one CD4+ T cell clone (361) to monitor development of H-2Kb-specific immature thymocytes when all thymic cells or lymphoid cell lineages only expressed H-2Kb. Thymocyte precursors were not eliminated and mice were not tolerant to H-2Kb when Tg361 TCR transgenic mice were intercrossed with CD2Kb mice. In contrast, all thymocyte precursors were eliminated efficiently in thymic microenvironments in which all cells expressed H-2Kb. We conclude that self MHC I Ags expressed exclusively in thymocytes do not induce T cell tolerance because presentation of processed self MHC I Ags on self MHC II molecules fails to induce negative selection of CD4+ T cell precursors. This suggests that some self Ags are effectively compartmentalized and cannot induce self-tolerance in the T cell repertoire.  相似文献   

3.
The nature of the signals that influence thymocyte selection and determine the fate of CD4(+)8(+) (double positive) thymocytes remains unclear. Cytokines produced locally in the thymus may modulate signals delivered by TCR-MHC/peptide interactions and thereby influence the fate of double-positive thymocytes. Because the IL-2/IL-2R signaling pathway has been implicated in thymocyte and peripheral T cell survival, we investigated the possibility that IL-2/IL-2R interactions contribute to the deletion of self-reactive, Ag-specific thymocytes. By using nontransgenic and transgenic IL-2-sufficient and -deficient animal model systems, we have shown that during TCR-mediated thymocyte apoptosis, IL-2 protein is expressed in situ in the thymus, and apoptotic thymocytes up-regulate expression of IL-2RS: IL-2R(+) double-positive and CD4 single-positive thymocytes undergoing activation-induced cell death bind and internalize IL-2. IL-2-deficient thymocytes are resistant to TCR/CD3-mediated apoptotic death, which is overcome by providing exogenous IL-2 to IL-2(-/-) mice. Furthermore, disruption or blockade of IL-2/IL-2R interactions in vivo during Ag-mediated selection rescues some MHC class II-restricted thymocytes from apoptosis. Collectively, these findings provide evidence for the direct involvement of the IL-2/IL-2R signaling pathway in the deletion of Ag-specific thymocyte populations and suggest that CD4 T cell hyperplasia and autoimmunity in IL-2(-/-) mice is a consequence of ineffective deletion of self-reactive T cells.  相似文献   

4.
Developing T cells undergo distinct selection processes that determine the TCR repertoire. Positive selection involves the differentiation of immature thymocytes capable of recognizing antigens complexed with self-MHC molecules to mature T cells. Besides the central role of TCR engagement by MHC in triggering selection; the interaction of CD8 and CD4 with MHC class I and class II, respectively; is thought to be important in regulating the selection process. To study potential mechanisms involved in positive selection of CD8+ cells, we have analyzed mice expressing a unique transgenic TCR. The transgenic receptor recognizes the HY male Ag in the context of the MHC class I molecule, H2-Db. We describe that CD8 and the TCR are selectively associated in thymocytes of mice expressing the restricting MHC, but not in thymocytes of mice expressing a nonrestricting MHC. pp56lck and pp59fyn, the tyrosine kinases associated with CD8 and TCR, respectively, were found to be present in this complex in an activated form. No comparable TCR-CD4 complex formation was found in thymuses undergoing positive selection to CD8+ cells. The formation of a multimolecular complex between CD8 and TCR, in which pp56lck and pp59fyn are activated, may initiate specific signaling programs involved in the maturation of CD8+ cells.  相似文献   

5.
T-cell receptors (TCRs) are created by a stochastic gene rearrangement process during thymocyte development, generating thymocytes bearing useful, as well as unwanted, specificities. Within the latter group, autoreactive thymocytes arise which are subsequently eliminated via a thymocyte-specific apoptotic mechanism, termed negative selection. The molecular basis of this deletion is unknown. Here, we show that TCR triggering by peptide/MHC ligands activates a caspase in double-positive (DP) CD4+ CD8+ thymocytes, resulting in their death. Inhibition of this enzymatic activity prevents antigen-induced death of DP thymocytes in fetal thymic organ culture (FTOC) from TCR transgenic mice as well as apoptosis induced by anti-CD3epsilon monoclonal antibody and corticosteroids in FTOC of normal C57BL/6 mice. Hence, a common caspase mediates immature thymocyte susceptibility to cell death.  相似文献   

6.
Intimate interactions between the two major systems of cell-to-cell communication, the neuroendocrine and immune systems, play a pivotal role in homeostasis and developmental biology. During phylogeny as well as during ontogeny, the molecular foundations of the neuroendocrine system emerge before the generation of diversity within the system of immune defenses. Before reacting against non-self infectious agents, the immune system has to be educated in order to tolerate the host molecular structure (self). The induction of self-tolerance is a multistep process that begins in the thymus during fetal ontogeny (central tolerance) and also involves anergizing mechanisms outside the thymus (peripheral tolerance). The thymus is the primary lymphoid organ implicated in the development of competent and self-tolerant T-cells. During ontogeny, T-cell progenitors originating from hemopoietic tissues (yolk sac, fetal liver, then bone marrow) enter the thymus and undergo a program of proliferation, T-cell receptor (TCR) gene rearrangement, maturation and selection. Intrathymic T-cell maturation proceeds through discrete stages that can be traced by analysis of their cluster differentiation (CD) surface antigens. It is well established that close interactions between thymocytes (pre-T-cells) and the thymic cellular environment are crucial both for T-cell development and for induction of central self-tolerance. Particular interest has focused on the ability of thymic stromal cells to synthesize polypeptides belonging to various neuroendocrine families. The thymic repertoire of neuroendocrine-related precursors recapitulates at the molecular level the dual role of the thymus in T-cell negative and positive selection. Thymic precursors not only constitute a source of growth factors for cryptocrine signaling between thymic stromal cells and pre-T-cells, but are also processed in a way that leads to the presentation of self-antigens by (or in association with) thymic major histocompatibility complex (MHC) proteins. Thymic neuroendocrine self-antigens usually correspond to peptide sequences highly conserved during the evolution of their corresponding family. The thymic presentation of some neuroendocrine self-antigens does not seem to be restricted by MHC alleles. Through the presentation of neuroendocrine self-antigens by thymic MHC proteins, the T-cell system might be educated to tolerate main hormone families. More and more recent experiments support the concept that a defect in thymic tolerogenic function is implicated as an important factor in the pathophysiology of autoimmunity.  相似文献   

7.
To better understand the T cell-mediated processes involved in the immune response to herpes simplex virus type 1 (HSV-1)infection, two HSV-specific T cell receptor (TCR) transgenic mouse lines were produced. These mice (gBT-I.1 and gBT-I.3) are MHC class I-restricted and specific for the immunodominant peptide from HSV glycoprotein B (gB), gB498-505. Although derived from the same clone, the mice differ in the chromosomal location of the TCR transgenes and show marked differences in TCR alpha/beta expression on both CD4+ and CD8+ cells in the thymus. Despite this, peripheral CD8+ Tcells from both mice express equally high levels of the transgenic TCR and bind the KbgB498-505 tetramer to the same degree. In concordance with this, both were shown to respond equally well in vitro upon stimulation with the gB498-505 peptide or HSV-infected cells. These data show that selection of broadly equivalent peripheral T-cell subsets can occur in the presence of distinctly different thymic T-cell subsets.  相似文献   

8.
Negative selection serves as a major mechanism to maintain self-tolerance. We previously reported that LIGHT (a cellular ligand for herpes virus entry mediator and lymphotoxin receptor), a TNF family member, plays an important role in thymocyte development via promoting apoptosis of double-positive thymocytes. Here, we demonstrated that LIGHT-mediated deletion of thymocyte requires the strong interaction of TCR with MHC/self-peptide. Transgenic mice overexpressing LIGHT in thymocytes were bred with a transgenic mouse line expressing a TCR recognizing the H-Y male Ag in the context of H-2b class I MHC molecules. In male H-Y/LIGHT double-transgenic mice, more efficient negative selection of H-Y T cells occurred, and total thymocyte number was further reduced compared with H-Y/negative littermates. In contrast, the presence of LIGHT transgene had no evident impact on the thymocyte development of female H-Y/LIGHT double-transgenic mice. Taken together, LIGHT plays a role in negative selection of thymocytes via inducing the apoptosis of thymocytes bearing high affinity TCR during negative selection.  相似文献   

9.
The conserved adaptor protein Numb is an intrinsic cell fate determinant that functions by antagonizing Notch-mediated signal transduction. The Notch family of membrane receptors controls cell survival and cell fate determination in a variety of organ systems and species. Recent studies have identified a role for mammalian Notch-1 signals at multiple stages of T lymphocyte development. We have examined the role of mammalian Numb (mNumb) as a Notch regulator and cell fate determinant during T cell development. Transgenic overexpression of mNumb under the control of the Lck proximal promoter reduced expression of several Notch-1 target genes, indicating that mNumb antagonizes Notch-1 signaling in vivo. However, thymocyte development, cell cycle, and survival were unperturbed by mNumb overexpression, even though transgenic Numb was expressed at an early stage in thymocyte development (CD4(-)CD8(-)CD3(-) cells that were CD44(+)CD25(+) or CD44(-)CD25(+); double-negative 2/3). Moreover, bone marrow from mNumb transgenic mice showed no defects in thymopoiesis in competitive repopulation experiments. Our results suggest that mNumb functions as a Notch-1 antagonist in immature thymocytes, but that suppression of Notch-1 signaling at this stage does not alter gammadelta/alphabeta or CD4/CD8 T cell fate specification.  相似文献   

10.
Following positive and negative selection in the thymus, mature CD4+ T-cells emigrate into peripheral lymphoid organs. Whether resting T-cells require periodic stimulation to remain viable in the absence of antigen is important for understanding peripheral T-cell homeostasis. A prerequisite for T-cell receptor (TCR)-mediated signals in maintaining peripheral CD4+ T-cell longevity has been demonstrated. Here, we show in mice expressing a mutant I-Abeta transgene on an I-Abeta knockout background that na?ve CD4+ T-cells also require engagement of their CD4 coreceptors by peripheral, class II MHC-bearing cells for their survival. The transgene's product combines with endogenous Aalpha, but this mutant AalphaAbeta heterodimer cannot interact with CD4 molecules, although it efficiently presents antigens to TCRs. Resting CD4+ T-lymphocytes from mutant Abeta transgenic mice die by apoptosis at a much higher rate than do CD4+ T-cells from normal mice. Apoptosis of CD4+ T-cells in mutant Abeta transgenic mice is partially mediated by Fas. Adoptive transfer experiments revealed that the increase in apoptosis is due to a lack of interactions with mutant MHC class II rather than to an intrinsic defect in the CD4+ T-cells selected on mutant Abeta-expressing thymic epithelial cells. Thus, interactions between CD4 and MHC class II molecules contribute to the regulation of homeostasis in the peripheral immune system. Our results further suggest that thymic emigrant cells are continuously retested in the periphery for appropriate coreceptor interactions. Peripheral selection may be important in eliminating potentially autoreactive T-cells.  相似文献   

11.
T cell development is determined by positive and negative selection events. An intriguing question is how signals through the TCR can induce thymocyte survival and maturation in some and programmed cell death in other thymocytes. This paradox can be explained by the hypothesis that different thymic cell types expressing self-MHC/peptide ligands mediate either positive or negative selection events. Using transgenic mice that express MHC class I (MHC-I) selectively on DC, we demonstrate a compartmentalization of thymic functions and reveal that DC induce CTL tolerance to MHC-I-positive hemopoietic targets in vivo. However, in normal and bone marrow chimeric mice, MHC-I+ DC are sufficient to positively select neither MHC-Ib (H2-M3)- nor MHC-Ia (H2-K)-restricted CD8+ T cells. Thus, thymic DC are specialized in tolerance induction, but cannot positively select the vast majority of MHC-I-restricted CD8+ T cells.  相似文献   

12.
13.
Development of thymocytes can be staged according to the levels of expression of the cell-surface markers CD4, CD8, CD44, CD25 and CD2. Thymocyte development is regulated by a complex signalling network [1], one component of which is the GTPase Rho. The bacterial enzyme C3 transferase from Clostridium botulinum selectively ADP-ribosylates Rho in its effector-binding domain and thereby abolishes its biological function [2,3]. To explore the function of Rho in thymocyte development, we previously used the proximal promoter of the gene encoding the Src-family kinase p56lck to make transgenic mice that selectively express C3 transferase in the thymus [4,6]. In these mice, which lack Rho function from the earliest thymocyte stages, thymocyte numbers are reduced by approximately 50- to 100-fold. Here, we describe transgenic mice that express C3 transferase under the control of the locus control region (LCR) of the CD2 gene; this regulatory element drives expression at a later stage of thymocyte development than the lck proximal promoter [7]. In these mice, thymocyte numbers were also reduced by 50- to 100-fold, but unlike the lck-C3 mice, in which the reduction predominantly results from defects in cell survival of CD25(+) thymocyte progenitors, the CD2-C3 transgenic mice had a pre-T-cell differentiation block at the CD25(+) stage after rearrangement of the T-cell receptor (TCR) beta chains. Analysis of CD2-C3 mice demonstrated that Rho acts as an intracellular switch for TCR beta selection, the critical thymic-differentiation checkpoint. These results show that Rho-mediated survival signals for CD25(+) pre-T cells are generated by the extracellular signals that act on earlier thymocyte precursors and also that temporal cell-type-specific elimination of Rho can reveal different functions of this GTPase in vivo.  相似文献   

14.
It is generally accepted that as the result of positive thymic selection, CD8-expressing T cells recognize peptide antigens presented in the context of MHC class I molecules and CD4-expressing T cells interact with peptide antigens presented by MHC class II molecules. Here we report the generation of TCRalpha/beta(+), CD3(+), CD4(+), CD8(-), MHC class I-restricted alloreactive T-cell clones which were induced using peripheral blood mononuclear cells from healthy individuals following in vitro stimulation with transporter associated with antigen processing (TAP)-deficient cell lines T2. The CD4(+) T-cell clones showed an HLA-A2.1-specific proliferative response against T2 cells which was inhibited by anti-CD3 and anti-CD4 monoclonal antibodies. These results suggest that interaction of the TCR with peptide-bound HLA class I molecules contributes to antigen-specific activation of these co-receptor-mismatched T-cell clones. Antigen recognition by alloreactive MHC class I-restricted CD4(+) T cells was inhibited by removing peptides bound to HLA molecules on T2 cells suggesting that the alloreactive CD4(+) T cells recognize peptides that bind in a TAP-independent manner to HLA-A2 molecules. The existence of such MHC class I-restricted CD4(+) T cells which can recognize HLA-A2 molecules in the absence of TAP function may provide a basis for the development of immunotherapy against TAP-deficient tumor variants which would be tolerant to immunosurveillance by conventional MHC class I-restricted cytotoxic lymphocytes.  相似文献   

15.
Signaling through the TCR/CD3 complex plays a critical role in T-cell development and activation. Gene-targeted mice lacking particular components of this complex show arrested T-cell development in the thymus. As all TCR/CD3 components are required for efficient surface expression of the complex, it is difficult to assess the specific signaling role of each receptor component. To overcome this problem, we designed a strategy to examine the specific role(s) of individual receptor chains. A chimeric protein, containing binding domains for chemical inducers of dimerization fused to the cytoplasmic tail of TCRzeta, was generated. Activation of the chimeric receptor after stimulation with chemical dimerizers in Jurkat cells showed tyrosine phosphorylation of the TCRzeta chain chimera, recruitment of phosphorylated Zap70, and generation of NFAT in a reporter assay. Analysis of thymocytes from transgenic mice expressing this chimeric receptor showed that intracytoplasmic crosslinking of the chimera induced tyrosine phosphorylation of the protein, as well as a slow and very weak calcium mobilization response. However, this signaling did not lead to increased expression of activation markers, T-cell proliferation, or apoptosis. In addition, stimulation of thymocytes in suspension or in fetal thymic organ cultures with chemical inducers of dimerization did not lead to alterations in positive or negative selection. We conclude that signaling through the TCRzeta chain alone is not sufficient to generate downstream events leading to full T-cell activation or thymocyte selection; instead, additional CD3 components must be required to induce a functional response in primary thymocytes and peripheral T cells.  相似文献   

16.
We have tested the peptide specificity of positive selection using three transgenic alphabetaTCRs, originally selected on class II MHC (A(b)) covalently bound with one peptide Ealpha (52-68) (Ep). The transgenic TCR specific for the cytochrome c-derived (43-58) peptide was selected on A(b) bound with different arrays of endogenous peptides or the analogue of Ep covalently bound to A(b), but not on the original A(b)Ep complex. In contrast, transgenic TCRs specific for two different analogues of the Ep peptide and A(b) did not mature as CD4(+) T cells in various thymic environments, including the A(b)EpIi(-) mice. These results show that TCRs can be promiscuous or specific for the selecting MHC/peptide complex, and suggest that in mice described in this study transgenic expression of the TCR changes the original requirements for the positively selecting MHC/peptide complex. Future studies will determine whether the latter phenomenon is general or specific for this system.  相似文献   

17.
The introduction of a soluble TCR (sTCR) recognizing class I major histocompatibility complex (MHC) in the fetal thymic microenvironment in vitro produces the selection of thymocytes with enhanced avidity for self class I MHC (8). The sTCR was supposed to impose enhanced avidity for self MHC at an early degenerate phase of TCR-driven selection. This could determine increased reactivity to self at later stages of differentiation when specificity of TCR-ligand interaction augments and the effect of sTCR vanishes. This hypothesis was based on the observed deletion of CD4+8+ thymocytes upon upregulation of TCR and the increase in cell size of some CD8+ cells which are expanded in long-term fetal thymus organ cultures (FTOC) as well as in the periphery of adoptively transferred nude mice. Here we show that the developing alphabeta thymocyte which does not express CD8 at the cell surface has a selective advantage in FTOC with sTCR, thus suggesting that participation of CD8 in self peptide/MHC recognition confers specificity to T-cell selection and results in excessive signaling in thymocytes in spite of the presence of sTCR.  相似文献   

18.
In this paper, we address the question whether CD4 and MHC class II expression are necessary for the development of the T helper lineage during thymocyte maturation and for activation-induced Th2 responses. To bypass the CD4-MHC class II interaction requirements for positive selection and activation, we used mice that are doubly transgenic for CD8 and for the MHC class I-restricted TCR F5. This transgene combination leads to MHC class I-dependent maturation of CD4 lineage cells. Upon activation, these CD4 lineage T cells secrete IL-4 and give help to B cells but show no cytotoxic activity. Remarkably, neither MHC class II nor CD4 expression are necessary for the generation and helper functions of these cells. This suggests that under normal conditions, coreceptor-MHC interactions are necessary to ensure the canonical combinations of coreceptor and function in developing thymocytes, but that they do not determine functional commitment. Our results also imply that expression of the CD4 gene does not influence, but is merely associated with the decision to establish the T helper program. In addition, we show that activation through TCR-MHC class I interactions can induce Th2 responses independently of CD4 and MHC class II expression.  相似文献   

19.
Current data indicate that CD5 functions as an inhibitor of TCR signal transduction. Consistent with this role, thymocyte selection in TCR transgenic/CD5(-/-) mice is altered in a manner suggestive of enhanced TCR signaling. However, the impact of CD5 deletion on thymocyte selection varies depending on the transgenic TCR analyzed, ranging from a slight to a marked shift from positive toward negative selection. An explanation for the variable effect of CD5 on selection is suggested by the observation that CD5 surface expression is regulated by TCR signal intensity during development and CD5 surface levels on mature thymocytes and T cells parallel the avidity of the positively selecting TCR/MHC/ligand interaction. In this study, we generated mice that overexpress CD5 during thymocyte development (CD5-tg), and then examined the effect of CD5 overexpression or CD5 deletion (CD5(-/-)) on selection of thymocytes that express the same TCR transgenes. The results demonstrate that the effect on thymocyte selection of altering CD5 expression depends on the avidity of the selecting interaction and, consequently, the level of basal (endogenous) CD5 surface expression. Substitution of endogenous CD5 with a transgene encoding a truncated form of the protein failed to rescue the CD5(-/-) phenotype, demonstrating that the cytoplasmic domain of CD5 is required for its inhibitory function. Together, these results indicate that inducible regulation of CD5 surface expression during thymocyte selection functions to fine tune the TCR signaling response.  相似文献   

20.
The T cell repertoire is shaped by the processes of positive and negative selection. During development, the TCR binds self peptide-MHC complexes in the thymus, and the kinetics of this interaction are thought to determine the thymocyte's fate. For development of CD8(+) T cells, the data supporting such a model have been obtained using fetal thymic organ culture. To confirm the fidelity of this model in vivo, we studied development of OT-I TCR-transgenic mice that expressed different individual K(b) binding peptides in thymic epithelial cells under the control of the human keratin 14 promoter. We used a system that allowed TAP-independent expression of the peptide-MHC complex, such that the ability of given peptides to restore positive selection in TAP(o) mice could be assessed. We found that transgenic expression of a TCR antagonist peptide (E1) in vivo efficiently restored positive selection of OT-I T cells in TAP(o) mice. An unrelated transgenic peptide (SIY) did not restore selection of OT-I T cells, nor did the E1-transgenic peptide restore selection of an unrelated receptor (2C), showing that positive selection is peptide specific in vivo, as observed in organ cultures. Neither E1 nor SIY transgenes increased the polyclonal CD8 T cell repertoire size in non-TCR-transgenic animals, arguing that single class I binding peptides do not detectably affect the size of the CD8 T cell repertoire when expressed at low levels. We also observed that OT-I T cells selected in TAP(o)-E1 mice were functional in their response to Ag; however, there was a lag in this response, suggesting that the affinity of the TCR interaction with MHC-self peptide can result in fine-tuning of the T cell response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号