首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This review will focus on the recent advance in the study of effect of transmembrane Ca2+ gradient on the function of membrane proteins. It consits of two parts: 1. Transmembrane Ca2+ gradient and sarcoplasmic reticulum Ca2+-ATPase; 2. Effect of transmembrane Ca2+ gradient on the components and coupling of cAMP signal transduction pathway. The results obtained indicate that a proper transmembrane Ca2+ gradient may play an important role in modulating the conformation and activity of SR Ca2+-ATPase and the function of membrane proteins involved in the cAMP signal transduction by mediating the physical state change of the membrane phospholipids.Abbreviations Cai Ca2+ inside vesicles - Ca0 Ca2+ outside vesicles - SR sarcoplasmic reticulum - PC phosphatidylcholine - PS phosphatidylserine - PG phosphatidylglycerol - PE phosphatidylethanolamine - DPH 1,6-diphenyl-1,3,5-hexatriene - n-AS n-(9-anthroyloxy) fatty acids - TMA-DPH 1-(4-trimethylammoniumphenyl)-6)-phenyl-1,3,5-hexatriene - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - -AR -adrenergic receptors - DHA dihydroalprenolol - AC adenylate cyclase - AC·Lca+– higher Ca2+ inside vesicles - AC·Lca– – lower Ca2+ on both side of vesicles - AC·Lca++ higher Ca2+ on both side of vesicles - AC·Lca– + higher Ca2+ outside vesicles - cAMP cyclic adenosine monophosphate - Gs stimulatory GTP-binding protein - GTP guanosine triposphate - GTPS guanosine 50-(3-thiotriphosphate)  相似文献   

2.
The role of a transmembrane Ca2+ gradient in anion transport by Band 3 of human resealed erythrocyte ghosts has been studied. The results show that a transmembrane Ca2+ gradient is essential for the conformation of erythrocyte Band 3 with higher anion transport activity. The dissipation of the transmembrane Ca2+ gradient by the ionophore A23187 inhibits the anion transport activity. The extent of this inhibition approaches 90% as the Ca2+ concentration on both sides of the ghost membrane is increased to 1.0 mM and half-maximum inhibition is observed at 0.25 mM Ca2+. Addition of ATP (0.4 mM) to the resealing medium can partly reestablish the transmembrane Ca2+ gradient by activation of Ca2+-ATPase and alleviate the inhibition to some extent. N-ethylmaleimide, an inhibitor of erythrocyte Ca2+-ATPase, prevents such restoration. Electron micrographs reveal that numerous larger intramembranous particles can be observed on the P-faces of freeze-fractured resealed ghosts in the absence of a transmembrane Ca2+ gradient.Abbreviations DPA dipicolinic acid - EITC eosin 5-isothiocyanate - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonate - TES N-Tris-(hydroxymethyl)methyl-2-aminoethane sulfonic acid - PMSF phenylmethyl-sulfonylfluoride - NEM N-ethylamaleimide - BSA bovine serum albumin - EGTA ethyleneglycol-bis (aminoethylether)-tetra-acetic acid - EITC-Band 3 Band 3 labeled with EITC - Cai Ca2+ inside resealed ghosts - Cao Ca2+ outside resealed ghosts  相似文献   

3.
Partially purified plasma membrane fractions were prepared from guinea-pig pancreatic acini. These membrane preparations were found to contain an ATP-dependent Ca2+-transporter as well as a heterogenous ATP-hydrolytic activity. The Ca2+-transporter showed high affinity for Ca2+ (KCa 2+ = 0.04 ± 0.01 M), an apparent requirement for Mg2+ and high substrate specificity. The major component of ATPase activity could be stimulated by either Ca2+ or Mg2+ but showed a low affinity for these cations. At low concentrations, Mg2+ appeared to inhibit the Ca2+-dependent ATPase activity expressed by these membranes. However, in the presence of high Mg2+ concentration (0.5–1 mM), a high affinity Ca2+-dependent ATPase activity was observed (KCa 2+ = 0.08 ± 0.02 M). The hydrolytic activity showed little specificity towards ATP. Neither the Ca2+-transport nor high affinity Ca2+-ATPase activity were stimulated by calmodulin. The results demonstrate, in addition to a low affinity Ca2+ (or Mg+)-ATPase activity, the presence of both a high affinity Ca2+-pump and high affinity Ca2+-dependent ATPase. However, the high affinity Ca2+-ATPase activity does not appear to be the biochemical expression of the Ca2+-pump.Abbreviations Ca2+-ATPase calcium-activated, magnesium-dependent adenosine triphosphatase - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - NADPH reduced form of nicotinamide adenine dinucleotide phosphate  相似文献   

4.
The regulatory role of Ca2+-stimulated adenosine 5-triphosphatase (Ca2+-ATPase) in Ca2+ transport system of rat liver nuclei was investigated. Ca2+ uptake and release were determined with a Ca2+ electrode. Ca2+-ATPase activity was calculated by subtracting Mg2+-ATPase activity from (Ca2+–Mg2+)-ATPase activity. The release of Ca2+ from the Ca2+-loaded nuclei was evoked progressively after Ca2+ uptake with 1.0 mM ATP addition, while it was only slightly in the case of 2.0 mM ATP addition, indicating that the consumption of ATP causes a leak of Ca2+ from the Ca2+-loaded nuclei. The presence of N-ethylmaleimide (NEM; 0.1 mM) caused an inhibition of nuclear Ca2+ uptake and induced a promotion of Ca2+ release from the Ca2+-loaded nuclei. NEM (0.1 and 0.2 mM) markedly inhibited nuclear Ca2+-ATPase activity. This inhibition was completely blocked by the presence of dithiothreitol (DTT; 0.1 and 0.5 mM). Also, DTT inhibited the effect of NEM (0.1 mM) on nuclear Ca2+ uptake and release. Meanwhile, verapamil and diltiazem (10 M), a blocker of Ca2+ channels, did not prevent the NAD+ (1.0 and 2.0 mM), zinc sulfate (1.0 and 2.5 M) and arachidonic acid (10 M)-induced increase in nuclear Ca2+ release, suggesting that Ca2+ channels do not involve on Ca2+ release from the nuclei. These results indicates that an inhibition of nuclear Ca2+-ATPase activity causes the decrease in nuclear Ca2+ uptake and the release of Ca2+ from the Ca2+-loaded nuclei. The present finding suggests that Ca2+-ATPase plays a critical role in the regulatory mechanism of Ca2+ uptake and release in rat liver nuclei.  相似文献   

5.
Summary A systematic study was made of the action of 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid (SITS) and 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS) on active Ca2+ transport of human erythrocytes. Pumping activity was estimated in inside-out vesicles (IOV's) by means of Ca2+-selective electrodes or use of tracer45Ca2+. The stilbenes exhibited an approximately equal inhibitory potency and their action could be overcome by carbonyl cyanidep-trifluoromethoxyphenylhydrazone (FCCP) at low but not at high stilbene concentrations. In the absence of DIDS. Ca2+ transport was not affected upon addition of valinomycin, but it was appreciably reduced when vesicles were preincubated with low DIDS concentrations. Such an effect was strictly dependent on the external K+ concentration and it was abolished when valinomycin was added together with FCCP. Similar results were obtained using IOV's prepared from intact cells which had been previously exposed to the stilbene. The findings clearly demonstrate the presence in human red cells of a partially electrogenic Ca2+ pump, exchanging one Ca2+ ion for one proton.  相似文献   

6.
The conformational states of Ca2+-ATPase in sarcoplasmic reticulum (SR) vesicles with or without a thousand-fold transmembrane Ca2+ gradient have been studied by fluorescence spectroscopy and fluorescence quenching. In consequence of the establishment of the transmembrane Ca2+ gradient, the steady-state fluorescence results revealed a reproducible 8% decrease in the intrinsic fluorescence while time-resolved fluorescence measurements showed that 13 tryptophan residues in SR · Ca2+-ATPase could be divided into three groups. The fluorescence lifetime of one of these groups increased from 5.5 ns to 5.95 ns in the presence of a Ca2+ gradient. Using KI and hypocrellin B (a photosensitive pigment obtained from a parasitic fungus, growing in Yunnan, China), the fluorescence quenching further indicated that the dynamic change of this tryptophan group, located at the protein-lipid interface, is a characteristic of transmembrane Ca2+ gradient-mediated conformational changes in SR · Ca2+-ATPase.Abbreviations SR sarcoplasmic reticulum - HB hypocrellin B - Trp tryptophan - DMSO dimethysulfoxide - Hepes N-2-hydroxyethyl piperazine-N-ethanesulfonic acad - SR(50005) SR vesicles with 1000-fold transmembrane Ca2+ gradient - SR(5050) SR vesicles without Ca2+ gradient - Ksv(app) apparent Stern-Volmer constant - Ksvi Stern-Volmer constant of component i for dynamic quenching  相似文献   

7.
Preparations of synaptosomes isolated in sucrose or in Na+-rich media were compared with respect to internal pH (pH1), internal Ca2+ concentration ([Ca2+]i), membrane potential and45Ca2+ uptake due to K+ depolarization and Na+/Ca2+ exchange. We found that synaptosomes isolated in sucrose media have a pHi of 6.77±0.04 and a [Ca2+]i of about 260 nM, whereas synaptosomes isolated in Na+-rich ionic media have a pHi of 6.96±0.07 and a [Ca2+]i of 463 nM, but both types of preparations have similar membrane potentials of about –50 mV when placed in choline media. The sucrose preparation takes up Ca2+ only by voltage sensitive calcium channels (VSCC'S) when K+-depolarized, while the Na+-rich synaptosomes take up45Ca2+ both by VSCC'S and by Na+/Ca2+ exchange. The amiloride derivative 2, 4 dimethylbenzamil (DMB), at 30 M, inhibits both mechanisms of Ca2+ influx, but 5-(N-4-chlorobenzyl)-2, 4 dimethylbenzamil (CBZ-DMB), at 30 M, inhibits the Ca2+ uptake by VSCC'S, but not by Na+/Ca2+ exchange. Thus, DMB and CBZ-DMB permit distinguishing between Ca2+ flux through channels and through Na+/Ca2+ exchange. We point out that the different properties of the two types of synaptosomes studied account for some of the discrepancies in results reported in the literature for studies of Ca2+ fluxes and neurotransmitter release by different types of preparations of synaptosomes.Abbreviations used BCECF 2,7-Biscarboxyethyl-5(6)-carboxyfluorescein - BCECF/AM acetoxymethyl ester of BCECF - [Ca2+]i Internal free calcium ion concentration - CBZ-DMB 5-(N-4-chlorobenzyl)-2,4-dimethylbenzamil - DMB 2, 4-dimethylbenzamil - DMSO dimethyl sulfoxide - Indo-1/AM acetoxymethyl ester of Indo-1 - MES 2-|N-Morpholino|ethanesulfonic acid - NMG N-methyl-D-glucamine - pHi internal pH - TPP+ tetraphenylphosphonium - p plasma membrane potential  相似文献   

8.
Summary The mechanism of voltage-sensitive dye responses was analyzed on sarcoplasmic reticulum vesicles to assess the changes in membrane potential related to Ca2+ transport. The absorbance and fluorescence responses of 3,3-diethyl-2,2-thiadicarbocyanine, 3,3-dimethyl-2,2-indodicarbocyanine and oxonol VI during ATP-dependent Ca2+ transport are influenced by the effect of accumulated Ca2+ upon the surface potential of the vesicle membrane. These observations place definite limitations on the use of these probes as indicators of ion-diffusion potential in processes which involve large fluctuations in free Ca2+ concentrations. Nile Blue A appeared to produce the cleanest optical signal to negative transmembrane potential, with least direct interference from Ca2+, encouraging the use of Nile Blue A for measurement of the membrane potential of sarcoplasmic reticulumin vivo andin vitro. 1,3-dibutylbarbituric acid (5)-1-(p-sulfophenyl)-3 methyl, 5-pyrazolone pentamethinoxonol (WW 781) gave no optical response during ATP-induced Ca2+ transport and responded primarily to changes in surface potential on the same side of the membrane where the dye was applied. Binding of these probes to the membrane plays a major role in the optical response to potential, and changes in surface potential influence the optical response by regulating the amount of membrane-bound dye. The observations are consistent with the electrogenic nature of ATP-dependent Ca2+ transport and indicate the generation of about 10 mV inside-positive membrane potential during the initial phase of Ca2+ translocation. The potential generated during Ca2+ transport is rapidly dissipated by passive ion fluxes across the membrane.  相似文献   

9.
The role of Ca2+-stimulated adenosine 5-triphosphatase (Ca2+-ATPase) in Ca2+ sequestering of rat liver nuclei was investigated. Ca2+-ATPase activity was calculated by subtracting Mg2+-ATPase activity from (Ca2+–Mg2+)-ATPase activity. Ca2+ uptake and release were determined with a Ca2+ electrode. Nuclear Ca2+-ATPase activity increased linearly in the range of 10–40 M Ca2+ addition. With those concentrations, Ca2+ was completely taken up by the nuclei dependently on ATP (2 mM). Nuclear Ca2+-ATPase activity was decreased significantly by the presence of arachidonic acid (25 and 50 M), nicotinamide-adenine dinucleotide (NAD+; 2 mM) and zinc sulfate (2.5 and 5.0 M). These reagents caused a significant decrease in the nuclear Ca2+ uptake and a corresponding elevation in Ca2+ release from the nuclei. Moreover, calmodulin (10 g/ml) increased significantly nuclear Ca2+-ATPase activity, and this increase was not seen in the presence of trifluoperazine (10 M), an antogonist of calmodulin. The present findings suggest that Ca2+-ATPase plays a role in Ca2+ sequestering by rat liver nuclei, and that calmodulin is an activator. Moreover, the inhibition of Ca2+-ATPase may evoke Ca2+ release from the Ca2+-loaded nuclei.  相似文献   

10.
Summary Treatment of Allium cepa L. cellsuspension cultures with a biotic elicitor derived from the fungus Botrytis cinerea, resulted in phytoalexin synthesis. Two phytoalexins, 5-octylcyclopenta-1,3-dione and 5-hexyl-cyclopenta-1,3-dione, were accumulated in cultured onion cells. Removal of extracellular Ca2+ by the calcium chelator ethylene glycol bis(b-aminoethyl ether) N,N-tetraacetic acid abolished the elicitor-mediated phytoalexin synthesis. The calcium channel blockers, verapamil and 8-N,N-(dimethylamino)octyl-3,4,5-trimethoxybenzoate caused similar effects, whereas the addition of the Ca2+ ionophore A23187 enhanced the accumulation of phytoalexins in the absence of the elicitor. Increase in the cytoplasmic Ca2+ concentration in elicitor-treated onion cells was observed as monitored by the fluorescent calcium indicator indo-1. These observations suggest that Ca2+ acts as a second messenger in the regulation of phytoalexin synthesis in cultured onion cells.Abbreviations A23187 4-bromo-calcium ionophore - cAMP adenosine 3,5-cyclic monophosphate - [Ca2+]cyt cytoplasmic Ca2+ concentration - EGTA ethylene glycol bis(b-aminoethyl ether) N,N-tetraacetic acid - EtOH ethanol - Et2O diethyl ether - fr.wt fresh weight - HR hypersensitive response - PIPES piperazine N,N-bis-(2-ethanesulfonic acid) - TMB-8 [8-N,N-(dimethylamino)] octyl-3,4,5-trimethoxy-benzoate - Tsl tsibulin  相似文献   

11.
Summary We examined the ionic regulation of tip growth inNeurospora crassa by a combination of electrophysiology and confocal microscopy. To determine if transmembrane ionic fluxes are required for tip growth, we voltage clamped the membrane from –200 to +50 mV. In this voltage range, transmembrane ionic fluxes would either reverse (e.g., K+) or change dramatically (e.g., Ca2+ influx) but had no effect on hyphal growth rates. Therefore, ionic fluxes (including Ca2+ influx) may not be required for tip growth. However, intracellular Ca2+ may still play an obligatory role in tip growth. To assess this possibility, we first increased cytosolic Ca2+ directly by ionophoresis. Elevated Ca2+ induced subapical branch initiation, often multiple tips. At hyphal tips, fluorescence ratio imaging using fluo-3 and fura-red revealed a pronounced tip-high Ca2+ gradient within 10 m of the tip in growing hyphae which was not observed in nongrowing hyphae. Injection of the Ca2+ chelator 1,2-bis(ortho-aminophenoxy)ethane-N,N,N,N-tetrapotassium acetate consistently inhibited growth concomitantly with a depletion of intracellular Ca2+ and dissipation of the tip-high gradient. We conclude that Ca2+ plays a regulatory role in tip initiation and the maintenance of tip growth. Because plasma membrane ionic fluxes do not play a role in tip growth, we suggest that the tip-high Ca2+ gradient is generated from intracellular Ca2+ stores in the ascomyceteN. crassa.Abbreviations BAPTA 1,2-bis(ortho-aminophenoxy)ethane-N,N,N,N-tetrapotassium acetate - [Ca2+]i intracellular Ca2+ concentration - fluo-3 2,7-dichloro-6-hydroxy-3-oxo-9-xanthenyl-4-methyl-2,2-(ethylenedioxy)dianiline-N,N,N,N-tetraacetic acid  相似文献   

12.
The characteristics of the inhibitory effect of calcium ion (Ca2+)/calmodulin (CaM) on specific [125I]-omega-conotoxin GVIA (125I--CTX) binding and on the labeling of 125I--CTX to crude membranes from chick brain were investigated. The inhibitory effect of Ca2+/CaM depended on the concentrations of free Ca2+ and CaM. The IC50 values for free Ca2+ and CaM were about 2.0 × 10–8 M and 3.0 g protein/ml, respectively. The inhibitory effect of Ca2+/CaM was attenuated by the CaM antagonists W-7, prenylamine and CaM-kinase II fragment (290–309), but not by the calcineurin inhibitor FK506. Ca2+/CaM also inhibited the labeling of a 135-kDa band (which was considered to be part of N-type Ca2+ channel 1 subunits) with 125I--CTX using a cross-linker. These results suggest that Ca2+/CaM affects specific 125I--CTX binding sites, probably N-type Ca2+ channel 1 subunits, in crude membranes from chick whole brain.  相似文献   

13.
Summary This communication reports the kinetics of the Na+/ Ca2+ exchanger and of the plasma membrane (PM) Ca2+ pump of the intact human platelet. The kinetic properties of these two systems were deduced by studying the rate of Ca2+ extrusion and its Na+ dependence for concentrations of cytoplasmic free Ca2+ ([Ca2+]cyt) in the 1–10-m range. The PM Ca2+ATPase was previously characterized (Johansson, J.S. Haynes, D.H. 1988. J. Membrane Biol. 104:147–163) for [Ca2+]cyt] 1.5 m with the fluorescent Ca2+ indicator quin2 (K d= 115 nm). That study determined that the PM Ca2+ pump in the basal state has a V max = 0.098 mm/min, a K m= 80 nm and a Hill coefficient = 1.7. The present study extends the measurable range of [Ca2+]cyt with the intracellular Ca2+ probe, rhod2 (K d= 500 nm), which has almost a fivefold lower affinity for Ca2+. An Appendix also describes the Mg2+ and pH dependence of the K dand fluorescence characteristics of the commercially available dye, which is a mixture of two molecules. Rates of active Ca2+ extrusion were determined by two independent methods which gave good agreement: (i) by measuring Ca2+ extrusion into a Ca2+-free medium (above citation) or (ii) by the newly developed ionomycin short-circuit method, which determines the ionomycin concentration necessary to short circuit the PM Ca2+ extrusion systems. Absolute rates of extrusion were determined by knowledge of how many Ca2+ ions are moved by ionomycin per minute. The major findings are as follows: (i) The exchanger is saturable with respect to Ca2+ with a K m= 0.97 ± 0.31 m and Vmax = 1.0 ± 0.6 mm/ min. (ii) At high [Ca2+]cyt, the exchanger works at a rate 10 times as large as the basal V max of the PM Ca2+ extrusion pump. (iii) The exchanger can work in reverse after Na+ loading of the cytoplasm by monensin. (iv) The PM Ca2+ extrusion pump is activated by exposure to [Ca2+]cyt 1.5 m for 20–50 sec. Activation raises the pump V max to 1.6 ± 0.6 mm/min and the K mto 0.55 ± 0.24 m. (v) The Ca2+ buffering capacity of the cytoplasm is 3.6 mm in the 0.1 to 3 m range of [Ca2+]cyt. In summary, the results show that the human platelet can extrude Ca2+ very rapidly at high [Ca2+]cyt. Both the Na+/Ca2+ exchanger and Ca2+ pump activation may prevent inappropriate platelet activation by marginal stimuli.Abbreviations cAMP cyclic adenosine 3,5-monophosphate - cGMP cyclic guanosine 3,5,-monophosphate - Ca-CAM calcium calmodulin; - DT dense tubules - B intrinsic cytoplasmic Ca2+ binding sites - R rhod2 or 5-(3,6-bis(dimethylamino)xanth-9-yl)-1-(2-amino-4-hy droxy lphenoxy)-2-(2-amino-5-methylphen- oxy)ethane-N,N,NN-tetraacetic acid - [Ca2+]cyt cytoplasmic Ca2+ activity - quin2 2-[[2-bis[(carboxymethyl)amino]-5-methyl-phenoxy]methyl]-6-methoxy-8-[bis(carboxymethyl)amino]quinoline - V or Vextrusion true rate of Ca2+ extrusion - fura-2 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,NN-tetraacetic acid - AM acetoxymethyl ester - DMSO dimethylsulfoxide - CTC chlortetracycline - EGTA ethyleneglycol-bis(-aminoethyl ether) N,N,N,N- tetraacetic acid - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - NMDG N-methyl-d-glucamine - PIPES 1,4-piperazine-bis-(ethanesulfonic acid) - HPLC high performance liquid chromatography - I fraction of high-affinity rhod2 complexed with Ca2+ - F the observed fluorescence - Fmin the minimal fluorescence observed in the absence of Ca2+ - Fmax the maximal fluorescence observed when the dye is saturated with Ca2+ - X1 the fraction of high-affinity dye - K d,1 dissociation constant of high-affinity dye - K d,2 dissociation constant of the low-affinity dye - -d1/dt rate of Ca2+ removal from the rhod2-Ca complex; - -dF/dt the slope representing the absolute rate of fluorescence decrease in a progress curve - Fmax (Fmax — Fmin)cyt difference between maximal and minimal fluorescence for cytoplasmic high affinity form of rhod2 - F50 fluorescence of the high-affinity form ofrhod2for[Ca2+]cyt=50 nM - [Ca2+]0 external Ca2+concentration - K p proportionality constant between the total number of Ca2+ ions moved and the change in high-affinity rhod2 complexation to Ca2 - (d[Ca2+]cyt, T)/dt rate of Ca2+ influx obtained with maximal levels of ionomycin - kleak rate constant for passive inward Ca2+ leakage - kinno rate constant for ionomycin-mediated Ca2+ influx - T total - [rhod2]cyt,T total intracellular rhod2 concentration - [quin2]cyt,T total intracellular quin2 concentration - [B]T total cytoplasmic buffering capacity - A[Ca2+]cyt,T total number of Ca2+ ions moved into the cytoplasm - [rhod2-Ca]cyt, T change in concentration of total intracellular high-affinity rhod2 complexed to Ca2+ - [B-Ca]T change in concentration of total cytoplasmic binding sites complexed to Ca2+ - [quin2]cyt, T change in concentration of total intracellular quinl complexed to Ca2+ - change in the degree of intracellular quin2 saturation - 1 change in degree of saturation of cytoplasmic high-affinity rhod2 - 1-/t rate of change in degree of saturation of cytoplasmic high affinityrhod2 - Vobs observed rate of Ca2+ removal from the rhod2-Ca complex - V8.3 m the rate of Ca2+ removal from the high affinity rhod2-Ca complex at [Ca2+]cyt = 8.3 m - /t rate of change in of the degree of quin2 saturation - [Ca2+]cytT/t initial linear rate of ionomycin-mediated Ca2+ influx - EC50 effective concentration giving a half-maximal effect - [Na+]cyt cytoplasmic Na+ activity - CAM calmodulin - ACN acetonitrile - TFA trifuloroacetic acid  相似文献   

14.
The polycationic dyes, Hoechst 33342 (Bisbenzimide,2-(4-ethoxyphenyl)-5-(4-methyl-1-piperazinyl) 2,5-bi 1H benzimidazole) and Hoechst 33258 (Bisbenzimide,2-(4-hydroxyphenyl) 5-(4-methyl-1-piperazinyl)-2,5-bi-1H-benzimidazole) alter the activity of the sarcoplasmic reticulum Ca2+ channel. Although they act competitively, Hoechst 33342 decreases, while Hoechst 33258 increases, the rate of channel-mediated Ca2+ efflux from junctional sarcoplasmic reticulum vesicles. Unlike other cationic sarcoplasmic reticulum Ca2+ channel antagonists, Hoechst 33342 blocks the ryanodine-activated Ca2+ channel. Both Hoechst 33342 and Hoechst 33258 inhibit the channel incorporated into the planar lipid bilayer. Since the only structural difference between the two dyes is that the agonist Hoechst 33258 has a hydroxy group where the antagonist Hoechst 33342 has an ethoxy group, it is possible that the more hydrophobic, bulky ethoxy group blocks Ca2+ movement through the channel, whereas the hydroxy group only reduces the rate of Ca2+ movement.The opinions or assertions contained herein are private ones of the author ad are not to beconstrued as official or reflecting the views of the Department of Defense or the Uniformed Services University of the Health Sciences.This work was supported by grants GM 29300 and GM 4695 from the National Institutes of Health and Grant C071BK from the Uniformed University of the Health Sciences.  相似文献   

15.
Under diurnal 16/8-h light-dark cycles, ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA) at 1 mM completely blocked the appearance of rhythmic N2-fixing activity in Synechococcus RF-1. Ca2+ at 2 mM, when supplied either together with or several hours after the EGTA application, restored the nitrogenase activity, whereas, when Ca2+ was supplied several hours later, the peak of nitrogenase activity was shifted from the dark to the light period in which the activity is normally suppressed. Sr2+ also reversed the inhibition by EGTA, but only partially. When O2 in the gas phase above the culture was below 1%, the inhibition of nitrogenase activity by EGTA was reduced to less than 20% of the control value without EGTA. Thus Ca2+ appears to be required by the cell to protect its nitrogenase from inactivation by O2. In media without EGTA, a close correlation between nitrogenase activity and concentrations of Ca2+ was also observed.Abbreviation EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid  相似文献   

16.
Summary The Ca2+ channel blockers felodipine and bepridil are known to affect selectively functions of calmodulin. We studied their effects on calmodulin binding and ATPase activities of calmodulin-containing and calmodulin-depleted rabbit heart sarcolemma. Both drugs as well as the specific anti-calmodulin drug calmidazolium at a concentration of 50 µM, inhibited the Ca2+-stimulated calmodulin binding to calmodulin-depleted sarcolemma. Within the concentration range of 3 to 100 µM all three drugs also progressively inhibited Ca2+ pumping ATPase in calmodulin containing sarcolemma, although the enzyme was assayed at saturating Ca2+ (100 µM). The inhibitory potency of calmidazolium and bepridil, but not that of felodipine, increased when the membrane protein concentration in the ATPase assay was lowered. At low membrane protein concentration 30 µM calmidazolium completely blocked calmodulin-dependent Ca2+ pumping ATPase, whereas the inhibition caused by 30 µM felodipine or bepridil remained partially. A similar inhibition pattern of the drugs was found in the calmodulin binding experiments. Within a concentration range of 3 to 30 µM, all three drugs had negligible effects on the basal Ca2+ pumping ATPase which was measured in calmodulin-depleted sarcolemma. In conclusion, the characteristics of the anti-calmodulin action of felodipine on the rabbit heart sarcolemmal Ca2+ pumping ATPase are not different from those of bepridil. Both drugs may inhibit the enzyme by interference with the Ca2+-stimulated binding of calmodulin.Abbreviations Ca2+ pumping ATPase Ca2+ stimulated Mg2+-dependent ATP hydrolyzing activity - Na+ pumping ATPase Na+-stimulated K+- and Mg2+-dependent ATP hydrolyzing activity - Tris-maleate tris (hydroxymethyl) aminomethane hydrogen maleate - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Mes 2-(N-morpholino) ethane sulfonic acid and Egta, ethylene glycol bis (p-amino ethylether)-N,N,N,N tetraacetic acid  相似文献   

17.
Summary Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be LROIO=431. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K m =0.11 m Ca2+ andV max=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 m at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+–K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 m Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells.  相似文献   

18.
Phytochrome is confirmed to be the photoreceptor pigment in the germination response of Onoclea sensibilis L. by demonstrating red-far-red (R-FR) photoreversibility. External Ca2+ is required for this response with a threshold at a submicromolar concentration. Ethylene glycol-bis(-amino-ethyl ether)-N,N,N,N-tetraacetic acid, La3+ and Co2+ reversibly inhibit germination. Lanthanum only inhibits germination when applied before or during irradiation, indicating that the external Ca2+ requirement is transient, although in the absence of Ca2+ the R-stimulated system remains maximally poised to accept the ion for over 4 h after irradiation. The ability to respond to Ca2+ 4.1 h after R-irradiation is not reversed by FR-irradiation, indicating that Ca2+ transport has been uncoupled from phytochrome. Barium and Sr2+, but not Mg2+ can substitute for Ca2+. Artificially increasing the concentration of intracellular free Ca2+ with the ionophore A 23187 stimulates germination in the dark. The Ca2+-calmodulin antagonists, trifluoperizine and chlorpromazine, reversibly inhibit germination. Calcium is required in phytochrome-mediated fern spore germination; it may be acting as a second messenger.Abbreviations EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FR far-red light - R fed light  相似文献   

19.
Bovine brain contains two calmodulin-dependent phosphodiesterase kinases which are separated on Sephacryl S-300 column. One of these kinases has been purified to homogeneity and shown to belong to the calmodulin-dependent protein kinase II family. Phosphorylation of the 63 kDa phosphodiesterase by this purified protein kinase results in the incorporation of 1.0 mol phosphate per mol subunit and an accompanying increase in Ca2+ concentrations required for the phosphodiesterase activation by calmodulin. The protein kinase undergoes autophosphorylation to incorporate 1.0 mol phosphate per mol of subunit of the enzyme and the autophosphorylated enzyme is active, independent of the presence of Ca2+. The autophosphorylation reaction as well as the protein kinase reaction are rendered Ca2+ independent in less than 15 seconds when approximately one mol phosphate per mol protein kinase is incorporated. The result suggests that activation of phosphodiesterase phosphorylation reaction may occur prior to the activation of phosphodiesterase and phosphatase during a cell Ca2+ flux via the protein kinase autophosphorylation mechanism.Abbreviations SDS sodium dodecyl sulfate - EGTA ethylene glycol bis (-aminoethyl ether) - N,N,N,N tetra acetic acid - EDTA ethylenediamine-tetraacetic acid - cAMP cyclic adenosine 35 monophosphate This work is supported by grants from the Medical Research Council of Canada (JHW), the Heart and Stroke Foundation of Alberta (JHW and RKS) and the Heart and Stroke Foundation of Saskatchewan (RKS)  相似文献   

20.
Hubert Felle 《Planta》1988,176(2):248-255
In cells of Zea mays (root hairs, coleoptiles) and Riccia fluitans (rhizoids, thalli) intracellular Ca2+ and pH have been measured with double-barrelled microelectrodes. Free Ca2+ activities of 109–187 nM (Riccia rhizoids), 94–160 nM (Riccia thalli), 145–231 nM (Zea root hairs), 84–143 nM (Zea coleoptiles) were found, and therefore identified as cytoplasmic. In a few cases (Riccia rhizoids), free Ca2+ was in the lower millimolar range (2.3±0.8 mM). A change in external Ca2+ from 0.1 to 10 mM caused an initial and short transient increase in cytoplasmic free Ca2+ which finally levelled off at about 0.2 pCa unit below the control, whereas in the presence of cyanide the Ca2+ activity returned to the control level. It is suggested that this behaviour is indicative of active cellular Ca2+ regulation, and since it is energy-dependent, may involve a Ca2+-ATPase. Acidification of the cytoplasmic pH and alkalinization of the vacuolar pH lead to a simultaneous increase in cytoplasmic free Ca2+, while alkalinization of pHc decreased the Ca2+ activity. Since this is true for such remote organisms as Riccia and Zea, it may be concluded that regulation of cytoplasmic pH and free Ca2+ are interrelated. It is further concluded that double-barrelled microelectrodes are useful tools for investigations of intracellular ion activities in plant cells.Symbols and abbreviations m, m membrane potential difference, changes thereof - PVC polyvinylchloride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号