首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation was undertaken to determine if the placental alkaline phosphatase of the rat enters the maternal circulation and to study some of its characteristics. Unlike human, rat placental alkaline phosphatase was found to be heat labile and the alkaline phosphatase activity in the serum of both pregnant and non-pregnant rats was also found to be heat labile. Also unlike the human, the alkaline phosphatase activity in rat serum does not increase as pregnancy progresses to term. In an endeavour to establish if the rat placental enzyme is present in the serum of the pregnant rat, the characteristics of the enzyme in both placental extracts and serum of non-pregnant and 1-, 2- and 3-week pregnant rats were studied using the techniques of heat stability at 56°, gel filtration through Sephadex columns, disc gel electrophoresis, and L-phenylalanine inhibition. The presence of rat placental alkaline phosphatase in maternal serum could not be positively demonstrated by any of these procedures, suggesting that rat placental alkaline phosphatase does not enter the maternal serum.  相似文献   

2.
The sequential discharge of neutrophilic polymorphonuclear leukocyte (PMN) granules—azurophils and specifics—was investigated by electron microscopy and cytochemistry. Thus the enzyme content of PMN phagocytic vacuoles was determined at brief intervals after phagocytosis of bacteria, utilizing peroxidase as a marker enzyme for azurophil granules, and alkaline phosphatase for specifics. At 30 s, approximately half the phagocytic vacuoles were reactive for alkaline phosphatase, whereas none contained peroxidase. Peroxidase-containing vacuoles were rarely seen at 1 min, but by 3 min, vacuoles containing both enzymes were consistently present. Alkaline phosphatase was found in both small and large vacuoles, whereas peroxidase was visible only in large ones. By 10 min, very big phagocytic vacuoles containing considerable amounts of reaction product for both enzymes were evident. These observations indicate that the two types of PMN granules discharge in a sequential manner, specific granules fusing with the vacuole before azurophils. In an earlier paper, we reported that the pH of phagocytic vacuoles drops to 6.5 within 3 min and to ~4 within 7–15 min. Substances known to be present in specific granules (alkaline phosphatase, lysozyme, and lactoferrin) function best at neutral or alkaline pH, whereas most of those contained in azurophil granules (i.e., peroxidase and the lysosomal enzymes) have pH optima in the acid range. Hence the sequence of granule discharge roughly parallels the change in pH, thereby providing optimal conditions for coordinated activity of granule contents.  相似文献   

3.
Translation of rat intestinal RNA yields two alkaline phosphatases.   总被引:2,自引:0,他引:2       下载免费PDF全文
After translation of total rat intestinal RNA, immunoprecipitation using monospecific antiserum against rat intestinal alkaline phosphatase yielded two polypeptides in the adult duodenum and jejunum (molecular masses 62 and 65 kDa). Immunoprecipitation of both bands was blocked by a single purified alkaline phosphatase. In the adult ileum and in the entire small intestine of suckling pups, only the 62 kDa translation product was found. After fat feeding, translated alkaline phosphatase increased by an amount proportionate to the increase in enzyme activity previously seen in the serum. A small fraction of nascent alkaline phosphatase was translocated into microsomal vesicles, producing peptides of 65 and 69 kDa. Tunicamycin-treated membranes demonstrated a different signal peptide for each translation product. N-Terminal sequencing of the translation products showed leucine residues at similar positions, but overlap with the mature protein sequence was not demonstrated. On the basis of these data, we propose the presence of two mRNAs encoding alkaline phosphatase in the rat intestine.  相似文献   

4.
Summary The dry mass of reaction products in ultrathin sections was determined using electron micrographs of polystyrene spheres of known weight deposited on Formvar membranes and evaluating the negatives photometrically. This method was applied to the quantification of the final reaction product of the acid phosphatase reaction in a model system in which enzyme was incorporated in gelatin. The enzyme activity was demonstrated by the lead precipitation method and quantified by direct microphotometry at the light microscope level. Models were then embedded and sectioned for electron microscopy. Microphotometric values afforded by the electron negatives were in linear correlation with incubation times and enzyme concentration. Section thickness and its possible variations due to deformation or contamination under the electron beam were also evaluated. Measurements of lysosomal acid phosphatase activity in rat kidney sections served to illustrate the application of the technique.  相似文献   

5.
In this light microscopic study, the inhibitory effect of levamisole on the alkaline phosphatase of equine, bovine and rat neutrophilic leukocytes was examined histochemically, using 0.05, 0.1 and 0.5 mM levamisole in the incubation mixture. Levamisole proved to be a potent inhibitor of neutrophilic alkaline phasphatase already at very low concentrations. Statistically significant differences in the rate of inhibition of the enzyme were found between the species examined. Some observations of the eosinophils were also made; equine eosinophils were found to be considerably resistant towards alkaline phosphatase inhibition with levamisole at the concentrations used.  相似文献   

6.
The tissue content of pyridoxal 5'-phosphate is controlled principally by the protein binding of this coenzyme and its hydrolysis by a cellular phosphatase. The present study identifies this enzyme and its intracellular location in rat liver. Pyridoxal-P is not hydrolyzed by the acid phosphatase of intact lysosomes. At pH 7.4 and 9.0, the subcellular distribution of pyridoxal-P phosphatase activity is similar to the for p-nitrophenyl-P, and the major portion of both activities is found in the plasma membrane fraction. The ratio of specific activities for pyridoxal-P and p-nitrophenyl-P hydrolysis remains relatively constant during the isolation of plasma membranes. These activities also behave concordantly with respect to pH rate profile, pH-Km profile, and response to chelating agents, Zn2+, Mg2+, and inhibitors. Kinetic studies indicate that pyridoxal-P binds to same enzyme sites as beta-glycerophosphate and phosphorylcholine. The data strongly favor alkaline phosphatase as the enzyme which functions in the control of pyridoxal-P and pyridoxamine-P metabolism in rat liver. Alkaline phosphatase was solubilized from isolated plasma membranes. The kinetic properties of the enzyme are not markedly altered by its dissociation from the membrane matrix. However, there are significant differences in its behavior toward Mg2+ which suggest a structural role for Mg2+ in liver alkaline phosphatase.  相似文献   

7.
The hydrolysis of phosphate esters by a mutationally altered alkaline phosphatase from Escherichia coli was studied by both steady-state and transient-kinetic methods. The difference between the catalytic-centre activities of the mutationally altered and the wild-type alkaline phosphatases was found to vary with pH and at optimal pH values the modified enzyme had the higher activity. Stopped-flow experiments at acidic pH values showed that transient product formation by the mutationally altered enzyme was faster than that with the wild-type enzyme whereas the rate of the steady state was slower. In the alkaline pH region, the transient was observed in the reaction of only the modified enzyme and not the wild type. These observations permit a fuller characterization of the individual steps in the catalytic mechanism of alkaline phosphatase than is possible by study of only the wild-type enzyme.  相似文献   

8.
Induced alkaline phosphatase has been extracted from osteosarcoma cells grown in tissue culture medium. The extracted enzyme has been purified. Using electrophoresis, inhibition studies, and thermolability, the enzyme was categorized as alkaline phosphatase of osseous origin. Antibodies to this enzyme were reacted against alkaline phosphatase extracted from cadaveric bone, liver, intestine, kidney and fresh placenta. The antibodies were specific against alkaline phosphatase of osseous origin only. No cross-reaction occurred with the enzyme extracted from other sources. The data derived from these studies indicate that alkaline phosphatase of bone is a specific enzyme of osseous tissue. Furthermore, the enzyme has specific antigenic and other properties which distinguish it from alkaline phosphatases from other sources. A model for in vitro production of a specific alkaline phosphatase of bone is presented.  相似文献   

9.
The enzymatic activity and distribution of peroxisomes (microbodies) in rat and guinea pig hearts were studied cytochemically, by means of oxidation of 3-3'-diaminobenzidine (DAB) and by using B-glycerophosphate and cytidine-5'-monophosphate as substrates. Peroxisomes were localized in proximity to mitochondria and sarcoplasmic reticulum and measured from 0.2 micrometers to 0.5 micrometers in diameter in both animal species. DAB positive bodies were seen both at pH 9.0 and pH 5.0 in rat myocardial cells. However, in guinea pig myocardial cells the reaction was observed only at pH 9.0, or very faintly at pH 5.0. Acid and alkaline phosphatases were not demonstrated in the peroxisomes. Lipid droplets were surrounded by a ring of dense granular reaction product for enzymes, such as acid and alkaline phosphatase, and lipofuscin granules were limited by acid phosphatase or DAB reaction products. The pathophysiological function of peroxisomes is discussed.  相似文献   

10.
Erythrocyte ghosts containing varying amounts of alkaline phosphatase were used to study the localization mechanisms of three metal salt and one azo method for this enzyme. For the azo method, the minimal amount of alkaline phosphatase that can be visualized within the ghosts proved only to be limited by the optical properties of the azo compound. In contrast, for the metal salt methods, a certain threshold activity had to be present in the ghosts in order to obtain correct localization of the final reaction product. The localization properties of both azo and metal salt methods conformed to the theories of cytochemical enzyme localization presented to date. By determining the rate constant of the capture reaction and the diffusion constant of the primary product, the localization properties of the azo method could be predicted. Some remaining discrepancies between theory and practice are discussed.  相似文献   

11.
A novel technique for the histochemical demonstration of acid phosphatase (AcPase) and alkaline phosphatase (AkPase) in hard tissues has been proposed. Fresh, unfixed, undecalcified samples of rat tooth germs and surrounding structures were embedded in LR Gold resin at -20 degrees C. Sections of 2 microns were taken and subsequently processed for enzyme histochemistry. AkPase reaction product appeared as strong linear staining outlining cell boundaries and was present in the enamel organ, dental pulp, and osteoblast cells. Tartrate-resistant AcPase staining was seen exclusively in the osteoclasts of developing alveolar bone. Our results demonstrated that the use of unfixed, undecalcified LR Gold resin-embedded specimens for histochemistry is a novel technique which may be of value for certain studies when decalcification of specimens is undesirable. The technique appears to give good preservation of enzyme activity combined with the ability to prepare sections with excellent morphological detail.  相似文献   

12.
Gametes, zoospores, and zygotes of the multicellular, green alga Ulva mutabilis showed acid phosphatase reaction product in Golgi vesicles and on the membrane lining the vacuole. In addition gametes and zoospores showed enzyme reaction product on the entire surface membrane including the flagellar membrane. The surface membrane enzyme activity disappears from the zygote shortly after copulation and at the same time lysosome-like bodies start to appear in the cytoplasm. No alkaline phosphatase activity could be detected. The distribution of acid phosphatase is discussed in relation to the events taking place during and shortly after fertilization.  相似文献   

13.
H G Bernstein  H Luppa 《Histochemistry》1978,56(3-4):341-343
The pattern and some substrates characteristic of the rat brain 5'-nucleotidase were studied using the isoelectric focusing technique, which revealed that the enzyme is present in a single form in hippocampus extracts. An alkaline phosphatase, which is also able to split nucleoside monophosphates, is not active at neutral pH values. The isoelectric points were found to be 6.4 +/- 0.1 for the specific 5'-nucleotidase and 6.8 +/- 0.1 for the phosphatase.  相似文献   

14.
Summary The previously undescribed localization of reaction products of adenosinetriphosphatase and of alkaline phosphatase in eosinophil leukocytes was demonstrated by cytochemical studies of the rat intestine. Alkaline phosphatase reaction product was found only in minimal amounts on the plasma membrane but was distinct on the nuclear membranes and outer compartment of mitochondria but not on the cristae. The Golgi membranes and the endoplasmic reticulum reacted but less intensely. The specific granules showed no alkaline phosphatase activity.The adenosinetriphosphatase reaction, on the other hand, was found on the plasma membrane, vesicular or tubular profiles of the endoplasmic reticulum and on the matrix of the specific granules. The crystalloid of the granules did not show any reaction.Recipient of a postdoctoral fellowship from the muscular distrophy association of Canada.  相似文献   

15.
This report is the first cytochemical investigation of vanishing bone disease "Gorham's Disease" (Gorham and Stout 1955). The ultrastructural localization of non-specific alkaline phosphatase and of specific and non-specific acid phosphatase activity was studied in slices of tissue removed from a patient with this rare disorder. Sodium beta-glycerophosphate and phosphorylcholine chloride were used as substrates. Alkaline phosphatase was present around the plasma membranes of osteoblasts and associated with extracellular matrix vesicles in new woven bone. This is consistent with the proposed role for this enzyme (Robison 1923) and for matrix vesicles (Bonucci 1967) in the mineralization of bone (Bernard and Marvaso 1981). Concentrations of specific secretory acid phosphatase reaction product in the cytoplasm of degenerating osteoblasts may contribute to the imbalance between bone formation and resorption. Osteoclasts, while few in number, showed non-specific and specific acid phosphatase activity. The Golgi apparatus and heterophagic lysosomes of mononuclear phagocytes were rich in non-specific acid phosphatase. This was also present in the Golgi lamellae and lysosomes of endothelial cells. Acid phosphatase cytochemistry suggests that mononuclear phagocytes, multinuclear osteoclasts and the vascular endothelium are involved in bone resorption in this disease.  相似文献   

16.
Sun L  Martin DC  Kantrowitz ER 《Biochemistry》1999,38(9):2842-2848
Escherichia coli alkaline phosphatase catalyzes both the nonspecific hydrolysis of phosphomonoesters and a transphosphorylation reaction in which phosphate is transferred to an alcohol via a phosphoseryl intermediate. The rate-determining step for the wild-type enzyme is pH dependent. At alkaline pH, release of the product phosphate from the noncovalent enzyme-phosphate complex determines the reaction rate, whereas at acidic pH hydrolysis of the covalent enzyme-phosphate complex controls the reaction rate. When the lysine at position 328 was substituted with a cysteine (K328C), the rate-determining step at pH 8.0 of the mutant enzyme was altered so that hydrolysis of the covalent intermediate became limiting rather than phosphate release. The transphosphorylation activity of the K328C enzyme was selectively enhanced, while the hydrolysis activity was reduced compared to that of the wild-type enzyme. The ratio of the transphosphorylation to the hydrolysis activities increased 28-fold for the K328C enzyme in comparison with the wild-type enzyme. Several other mutant enzymes for which a positive charge at the active center is removed by site-specific mutagenesis share this characteristic of the K328C enzyme. These results suggest that the positive charge at position 328 is at least partially responsible for maintaining the balance between the hydrolysis and transphosphorylation activities and plays an important role in determining the rate-limiting step of E. coli alkaline phosphatase.  相似文献   

17.
Ferritin-conjugated specific antibodies have been used to localize beta-galactosidase and both the monomer and active dimer of alkaline phosphatase in frozen thin sections of cells of Escherichia coli O8 strain F515. The even distribution of the ferritin marker throughout cells that had been induced for beta-galactosidase synthesis, frozen, sectioned, and exposed to ferritin-anti-beta-galactosidase conjugate showed that this enzyme was present throughout the cytoplasm of these cells. Frozen thin sections of cells that had been derepressed for the synthesis of alkaline phosphatase were exposed to both ferritin-anti-alkaline phosphatase monomer and ferritin-anti-alkaline phosphatase dimer conjugates, and the ferritin markers showed a peripheral distribution of both the monomer and the dimer of this enzyme. This indicates that alkaline phosphatase is present only in the peripheral regions of the cell and argues against the existence of a cytoplasmic pool of inactive monomers of this enzyme. This peripheral location of both the monomers and dimers of alkaline phosphatase supports the developing concensus that this enzyme is, like other wall-associated enzymes, synthesized in association with the cytoplasmic membrane and vectorially transported to the periplasmic area, where it assumes its tertiary and quaternary structure and acquires its enzymatic activity.  相似文献   

18.
Cytochemical Localization of Certain Phosphatases in Escherichia coli   总被引:19,自引:12,他引:7       下载免费PDF全文
Cytochemical studies of Escherichia coli at the light and electron microscopic levels have revealed alkaline phosphatase, hexose monophosphatase, and cyclic phosphodiesterase reaction products in the periplasmic space and at the cell surface. In preparations for both light and electron microscopy, reaction product filled polar caplike enlargements of the periplasmic space, such as those described in plasmolyzed cells, indicating significant terminal concentrations of these enzymes; dense substance was often seen within these polar caps in morphological specimens. Staining of the bacterial surface was commonly encountered, but could represent artifactual accumulation of precipitate along the cell wall. Alkaline phosphatase was demonstrated with several substrates (ethanolamine phosphate, glycerophosphate, p-nitrophenylphosphate, and glucose-6-phosphate) over a wide pH range in a bacterial strain (C-90) known to be constitutive for this enzyme, whereas strains deficient in this enzyme (U-7, repressed K-37), showed no activity with these substrates. Hexose monophosphatase and cyclic phosphodiesterase activities were characterized by reaction-product deposition with specific substrates at acid or neutral, but not at alkaline, pH in strains of E. coli lacking alkaline phosphatase (U-7 and repressed K-37). Fixation in Formalin or the use of calcium as a capture reagent seemed to interfere with periplasmic staining in cells prepared for electron microscopy. Formalin fixation had little effect on biochemical assays of the phosphatase activity of intact cells in suspension, but partially reduced the activity evident in sonically treated extracts or in suspensions of dispersed cryostat sections. Glutaraldehyde treatment impaired enzyme activity more drastically.  相似文献   

19.
Polyacrylamide gel electrophoresis was used to investigate the relation of the soluble thiamine triphosphatase activity of various rat tissues to other phosphatases. This technique separated the thiamine triphosphatase of rat brain, heart, kidney, liver, lung, muscle and spleen from alkaline phosphatase (EC 3.1.3.1), acid phosphatase (EC 3.1.3.2) and other nonspecific phosphatase activities. In contrast, the hydrolytic activity for thiamine triphosphate in rat intestine moved identically with alkaline phosphatase in gel electrophoresis. Thiamine triphosphatase from rat liver and brain was also separated from alkaline phosphatase and acid phosphatase by gel chromatography on Sephadex G-100. This gave an apparent molecular weight of about 30,000 and a Stokes radius of 2.5 nanometers for brain and liver thiamine triphosphatase. The intestinal thiamine triphosphatase activity of the rat was eluted from the Sephadex G-100 column as two separate peaks (with apparent molecular weights of over 200,000 and 123,000) which exactly corresponded to the peaks of alkaline phosphatase. The isoelectric point (pI) of the brain thiamine triphosphatase was 4.6 (4 degrees C). The partially purified thiamine triphosphatase from brain and liver was highly specific for thiamine triphosphate. The results suggest that, apart from the intestine, the rat tissues studied contain a specific enzyme, thiamine triphosphatase (EC 3.6.1.28). The specific enzyme is responsible for most of the thiamine triphosphatase activity in these tissues. Rat intestine contains a high thiamine triphosphatase activity but all of it appears to be due to alkaline phosphatase.  相似文献   

20.
In the previous paper we presented findings which indicated that enzyme heterogeneity exists among PMN leukocyte granules. From histochemical staining of bone marrow smears, we obtained evidence that azurophil and specific granules differ in their enzyme content. Moreover, a given enzyme appeared to be restricted to one of the two types. Clear results were obtained with alkaline phosphatase, but those with a number of other enzymes were suggestive rather than conclusive. Since the approach used previously was indirect, it was of interest to localize the enzymes directly in the granules. Toward this end, we carried out cytochemical procedures for five enzymes on normal rabbit bone marrow cells which had been fixed and incubated in suspension. The localization of reaction product in the granules was determined by electron microscopy. In accordance with the results obtained on smears, azurophil granules were found to contain peroxidase and three lysosomal enzymes: acid phosphatase, arylsulfatase, and 5'-nucleotidase; specific granules were found to contain alkaline phosphate. Specific granules also contained small amounts of phosphatasic activity at acid pH. Another finding was that enzyme activity could not be demonstrated in mature granules with metal salt methods (all except peroxidase); reaction product was seen only in immature granules. The findings confirm and extend those obtained previously, indicating that azurophil granules correspond to lysosomes whereas specific granules represent a different secretory product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号