首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decoated pepper (Capsicum annuum L. cv Early Calwonder) seeds germinated earlier at 25°C, but not at 15°C, compared to coated seeds. The seed coat did not appear to impose a mechanical restriction on pepper seed germination. Scarification of the endosperm material directly in front of the radicle reduced the time to germination at both 15°C and 25°C.

The amount of mechanical resistance imposed by the endosperm on radicle emergence before germination was measured using the Instron Universal Testing Machine. Endosperm strength decreased as imbibition time increased. The puncture force decreased faster when seeds were imbibed at 25°C than at 15°C. The reduction in puncture force corresponded with the ability of pepper seeds to germinate. Most radicle emergence occurred at 15°C and 25°C after the puncture force was reduced to between 0.3 and 0.4 newtons.

Application of gibberellic acid4+7 (100 microliters per liter) resulted in earlier germination at 15°C and 25°C and decreased endosperm strength sooner than in untreated seeds. Similarly, high O2 concentrations had similar effects on germination earliness and endosperm strength decline as did gibberellic acid4+7, but only at 25°C. At 15°C, high O2 concentrations slowed germination and endosperm strength decline.

  相似文献   

2.
An increase in percentage germination is obtained with seeds of Medicago sativa exposed for 1 to 10 minutes at 2000 atmospheres hydraulic pressure at 20°C., dried, and germinated after 30 days; and from seeds of Melilotus alba under the same conditions of pressure, when exposed for 5 to 30 minutes, dried, and germinated 30 days later. Exposures to 500 atmospheres pressure was less advantageous for germination; the vitality of seeds normally germinating was more rapidly destroyed than the hard impermeable seeds rendered permeable by the pressure treatment. At 0°C., it required approximately 2½ times the exposure to 2000 atmospheres for seeds of Medicago sativa, and approximately 5 times the exposure for seeds of Melilotus alba, as it did at 20°C.  相似文献   

3.
Changes in germination, seedling growth, respiration, response to applied gibberellic acid, and glucose-U-14C utilization were investigated in partially dormant wheat (Triticum aestivum L., Pa 151 × 107) seeds which were stored under various conditions for periods up to 1 year. Only seeds stored at −20 C and 12.4% moisture maintained partial dormancy, which was overcome by germinating in 10−3m gibberellic acid. Germination and seedling growth of seeds stored at 25 C and 15.1% moisture declined within 12 weeks and the percentage of seeds infected with storage fungi increased. Gibberellic acid produced faster growing seedlings, particularly from those seeds with partial dormancy, but did not overcome growth reduction which was caused by deterioration. Seeds kept under laboratory conditions (B), 25 C and 12.1% moisture (C), and 25 C and 15.1% moisture (D) for 12 weeks utilized 35, 55, and 80% less glucose, respectively, than those stored at −20 C and 12.4% moisture (A). Seeds stored under B and C consistently had higher germination, growth, and respiratory rates than seeds from A and D. The respiratory rate declined as deterioration advanced under D. Respiratory quotients ranged from 1.0 for seeds stored under A to 1.6 for seeds stored under D.  相似文献   

4.
PETRUZZELLI  L. 《Annals of botany》1986,58(2):259-265
Wheat seeds (Triticum durum) were stored under both hermeticand aerobic conditions at 25 °C with moisture contents from15 to 33 per cent. Under hermetic storage, seeds lost viabilitymore rapidly the higher the moisture content, whereas in aerobicstorage, seed longevity was enhanced as the moisture contentwas increased from 24 to 31 per cent, and over this range ofmoisture content the seeds survived longer under aerobic thanhermetic storage. On the contrary, an apparent reversal of thistrend occurred when moisture content was increased above 31per cent. The possibility that the changes in longevity occurring at highermoisture contents might be due to the activation of seed metabolismwas supported by the enhanced incorporation of [3H]leucine intoTCA insoluble material (indicating increased protein synthesis)and the reduced leakage of glucose (indicating increased membranerestitution) when seeds were allowed to achieve higher moisturecontents during the prehydration period. The highest level ofseed activation was found in seeds preconditioned to about 31per cent moisture content. Moreover, these seeds, when subsequentlystored under aerobic conditions, maintained a higher rate ofprotein synthesis and lower membrane permeability during thestorage period than seeds at lower water contents. It is suggested that seeds stored at a sufficient hydrationlevel in the presence of oxygen can sustain an effective metabolismduring extended storage, thus permitting the repair of cellulardamage. However, it might be possible that at about 33 per centmoisture content seed could suffer from an excessive advancementof metabolism. Triticum durum, seed storage, effects of high moisture content and oxygen  相似文献   

5.
Over 50 per cent germination has been obtained from Elaeis guineensisform pisifera seeds stored in unaerated sterile distilled waterfor 6 months. The moisture levels of the seeds and excised embryoswere of the same order (20–30 and 60–70 per cent,respectively) as those of fully imbibed fresh seeds. The implicationsof an apparent lower oxygen requirement by seeds stored underwater as against germinating seeds are discussed in the contextof the successful storage. Elaeis guineensis, pisifera, germination, seed dormancy, embryo  相似文献   

6.
Lasia spinosa seeds were not dormant at maturity in early spring. The most favorable temperatures for germination were between 25 and 30 °C, and final percentage and rate of germination decreased with an increase or decrease in temperature. When L. spinosa seeds were transferred to 25 °C, after 60 days at 10 °C (where none of the seeds germinated), final germination increased from 0% to 78%. Seeds germinated to high percentage both in light and in dark, although dark germination took more than twice as long as in the light. During desiccation of seeds at 15 °C and 45% relatively humidity, moisture loss decreased exponentially from 2.02 to 0.13 g H2O g−1 dry wt within 16 days, and only a few seeds (12%) survived 0.13 g H2O g−1 dry wt moisture content. Seeds stored at 0.58 g H2O g−1 dry wt moisture content at four constant temperatures (4, 10, 15, and −18 °C) for up to 6 months exhibited a well-defined trend of decreasing viability with decreasing temperature. Thus, we concluded that freshly harvested L. spinosa seeds are non-dormant and recalcitrant. Also, the seeds with 0.58 g H2O g−1 dry wt moisture content could be effectively stored for a few months between 10 and 15 °C although the most appropriate temperature for wet storage appears to be 10 °C, as it is close to the minimum temperature for germination and so there will be less pre-sprouting compared to 15 °C.  相似文献   

7.
Khan AA  Zeng GW 《Plant physiology》1985,77(4):817-823
`Grand Rapids' lettuce Lactuca sativa L. seeds germinate readily at 15°C but poorly at 25°C in darkness. When held in dark at 25°C for an extended period, the ungerminated seeds become dormant as shown by their inability to germinate or transfer to 15°C in darkness. Induction of dormancy at 25°C was prevented by exposure to CN, azide, salicylhydroxamic acid (SHAM), dinitrophenol, and pure N2 as determined by subsequent germination at 15°C on removal of inhibitors. The effectiveness of inhibitors to break dormancy declined as dormancy intensified. At relatively low levels, CN, SHAM, and azide promoted dark germination at 25°C while at high levels they were inhibitory. Uptake of O2 by seeds held at 25°C for 4 days in 1.0 millimolar KCN was inhibited by 67% but was promoted 61% when KCN was removed. Correspondingly greater inhibition (79%) and promotion (148%) occurred when 1.0 millimolar SHAM was added to KCN solution. When applied alone, SHAM had little effect on O2 uptake. These data indicate that Cyt pathway of respiration plays a dominant role in the control of both dormancy induction and germination of lettuce seeds, and `alternative pathway' is effectively engaged in presence of CN. The channeling of respiratory energy use for processes governing germination or dormancy is subject to control by physical and chemical factors.

A scheme is proposed that illustrates compensatory use of energy for processes controlling dormancy induction and germination. A block of germination, e.g. by low water potential polyethylene glycol solution or a supraoptimal temperature spares energy to be utilized for dormancy induction while a block of dormancy induction by low levels of CN (similar to GA and light effects) drives germination. Blocking both processes by inhibitors (e.g. CN, CN + SHAM) presumably leads to accumulation of `reducing power' with consequent improvement in O2 uptake and oxidation rates of processes controlling germination or dormancy induction upon removal of the inhibitors.

  相似文献   

8.
The effects of equilibration under different air relative humidities (RH, 1 – 90 %) and temperatures (35 and 45 °C) on soybean (Glycine max) and wheat (Triticum aestivum) seeds were studied using different techniques. Seed moisture content, electrical conductivity (EC) of seed leachate and per cent seed germination were measured following standard procedures, and compared with nuclear magnetic resonance spin-spin relaxation time (T2) measurements. Moisture contents of soybean and wheat seeds, following the reverse sigmoidal trend, were greater at 35 than at 45 °C at any particular RH. Changes in T2 were related to the changes in germination percentage and leachate EC of both soybean and wheat seeds. Equilibrating soybean seeds at RH 11 % decreased germination percentage with corresponding decrease in T2. On the contrary, EC of seed leachate increased. In wheat seeds equilibrated at 45 °C, T2 was maximal at RH 5.5 %. T2 declined in seeds equilibrated at high RH (> 80 %) together with low germination percentage.  相似文献   

9.
Vertucci CW 《Plant physiology》1989,90(4):1478-1485
The effect of cooling rate on seeds was studied by hydrating pea (Pisum sativum), soybean (Glycine max), and sunflower (Helianthus annuus) seeds to different levels and then cooling them to − 190°C at rates ranging from 1°C/minute to 700°C/minute. When seeds were moist enough to have freezable water (> 0.25 gram H2O/gram dry weight), rapid cooling rates were optimal for maintaining seed vigor. If the seeds were cooled while at intermediate moisture levels (0.12 to 0.20 gram H2O per gram dry weight), there appeared to be no effect of cooling rate on seedling vigor. When seeds were very dry (< 0.08 gram H2O per gram dry weight), cooling rate had no effect on pea, but rapid cooling rates had a marked detrimental effect on soybean and sunflower germination. Glass transitions, detected by differential scanning calorimetry, were observed at all moisture contents in sunflower and soybean cotyledons that were cooled rapidly. In pea, glasses were detectable when cotyledons with high moisture levels were cooled rapidly. The nature of the glasses changed with moisture content. It is suggested that, at high moisture contents, glasses were formed in the aqueous phase, as well as the lipid phase if tissues had high oil contents, and this had beneficial effects on the survival of seeds at low temperatures. At low moisture contents, glasses were observed to form in the lipid phase, and this was associated with detrimental effects on seed viability.  相似文献   

10.
This research was conducted to determine the optimum moisture content (MC) that gave maximum longevity to seeds. Three species were used to represent seeds with different dry matter reserves, which gives them different sorption properties: maize (Zea mays L.), elm (Ulmus pumila L.) and safflower (Carthamus tinctorius L.). The seeds of elm, safflower, and maize embryos with MC ranging from 0.00–0.15 g H2O/g dry weight (DW) were stored at 35 °C for different periods of time. The results showed that the optimum MC for seed and embryo storage varied between species (0.057 g H2O/g DW for maize embryos, 0.045 g H2O/g DW for elm, and 0.02 g H2O/g DW for safflower). Drying below this optimum MC increased the aging rate and there were detrimental effects of drying. The relative humidity corresponding to optimum MC in embryos of maize, elms and safflower was about 15%, 12% and 7% respectively, according to the lipid composition of the embryos. The data provided confirmatory evidence that molecular mobility (ΔAzz) in elms, maize and safflower embryos was compatible with the optimum moisture content.  相似文献   

11.
Chilling injury is sustained by dry pollen of Typha latifolia L. upon hydration in germination medium at 0°C. This injury is evidenced as poor germination, low vigor, and depressed respiration. Isolated mitochondria showed multiple sites of impaired electron transport. Besides losses of cytochrome (Cyt) c and NAD+, the activities of membrane-bound enzyme complexes such as Cyt oxidase, NADH-duroquinone oxidoreductase, succinate-duroquinone oxidoreductase, and malate-duroquinone oxidoreductase were severely affected.

Similarly, as in isolated mitochondria, in situ tests of mitochondrial activity showed that Cyt c was partially lost from its site of action. Re-addition of the lost Cyt c to the grains restored the N,N,N′,N′-tetramethyl p-phenylenediamine dihydrochloride plus ascorbate-mediated electron transport from Cyt c to O2, but did not significantly accelerate the overall O2 uptake. Electron flow to duroquinone in the injured grains was low, indicating that lesions at the substrate side of ubiquinone determine the rate of O2 consumption. Leakage of NAD+, and also of adenylate phosphates and Krebs cycle substrates out of the injured grains, was considerable.

Increasing the initial moisture content of the grains strongly enhanced their resistance to cold hydration. Below 17% moisture content (fresh weight basis), the decrease in vigor closely matched the loss of NAD+ and adenosine phosphates. Vitality was irreversibly lost by cold hydration below 10 to 12% initial moisture content.

Injury to dry pollen was prevented by imbibition at 27°C. Decrease of vigor and increased leakage, however, started below 20°C, and complete loss of vitality occurred below 10°C.

These results are interpreted as evidence that loss of membrane integrity is the primary cause of imbibitional chilling injury.

  相似文献   

12.
Effects of dehydration, storage temperature and humidificationon germination of Salix alba andS. matsudana seeds were studied.Newly released seeds showed 100% germination before and afterdehydration to 11–12% moisture content. Germination ofthe high vigour lot (100% initial normal germination) was notaffected by dehydration to 6.7% moisture content but germinationdecreased with further dehydration to 4.3%. The lower vigourlot (75% initial normal germination) was more susceptible todehydration and germination decreased following dehydrationto 6.7% moisture content. Dry seeds of both species survivedimmersion in liquid nitrogen without loss of viability. Thegermination of seeds stored with 9% moisture content decreasedto 35–40% in 5 months at -20°C or in 2 months at 5°C.However, at 25°C seeds entirely lost viability within 2weeks. Seeds showed improved performance when stored at -70°C> - 20°C > 5°C > 25°C and tolerated dehydrationto a moisture content in equilibrium with 15% relative humidity.Results suggest that they are orthodox in storage behaviouralthough they are short-lived. Humidification treatment of lowvigour seed lots resulted in a remarkable increase in germinationpercentage. Copyright 2000 Annals of Botany Company Salix alba, Salix matsudana, willow, seed storage behaviour, dehydration, humidification, cryopreservation  相似文献   

13.
The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l−1) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1–1 mg l−1) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5–25 mg l−1) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l−1 ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2 •−) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect.  相似文献   

14.
Murphy JB  Noland TL 《Plant physiology》1982,70(5):1410-1412
When dormant sugar pine (Pinus lambertiana L.) seeds were imbibed at 5°C, they showed a rapid increase in O2 uptake, ATP level, and moisture content during the first 4 days. This was followed by a plateau phase until 60 days, after which a second significant increase in all three features occurred as dormancy was broken. During the plateau phase, conventional CN-sensitive respiration accounted for 74 to 79% of the total O2 uptake. When dormant sugar pine seeds were imbibed at and maintained at 25°C, a different pattern occurred. Water uptake was much more rapid during the first 4 days and no second increase occurred after 60 days because the seeds did not break dormancy. There was an initial burst of O2 uptake and ATP formation, but these both declined abruptly after 24 to 48 hours. Levels about half those of seeds at 5°C were maintained through the rest of a 90-day period. CN-sensitive respiration declined during imbibition at 25°C, and accounted for only 55 to 61% of the total O2 uptake. The inability of dormant sugar pine seeds to germinate at temperatures above about 17°C may therefore result from initial temperature effects on membrane properties, leading to reduced O2 uptake, reduced cytochrome oxidase electron transport activity, and lowered ATP levels.  相似文献   

15.
The capacity of plants to achieve successful germination and early seedling establishment under high salinity is crucial for tolerance of plants to salt. The gaseous hormone ethylene has been implicated in modulating salt tolerance, but the detailed role of how ethylene modulates the response of early seedling establishment to salt is unclear. To better understand the role of the ethylene signal transduction pathway during germination and seedling establishment, an ethylene insensitive mutation (ein2-5) and an ethylene sensitive mutation (ctr1-1) of Arabidopsis were analyzed under saline conditions and compared with the wild type plant (Col-0) as control. High salinity (>100?mM NaCl) inhibited and delayed germination. These effects were more severe in the ethylene insensitive mutants (ein2-5) and less severe in the constitutive ethylene sensitive plants (ctr1-1) compared with Col-0 plants. Addition of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or inhibitors of ethylene action implied that ethylene was essential for early seedling establishment under normal and saline conditions. Salt stress increased the endogenous concentration of hydrogen peroxide (H2O2) in germinating seeds and ACC reduced its concentration. Our results suggest that ethylene promotes germination under salinity by modulating the endogenous concentration of H2O2 in germinating seeds. These findings demonstrate that ethylene is involved in regulating germination as an initiator of the process rather than consequence, and that ethylene promotes germination by modulating the endogenous concentration of H2O2 in germinating seeds under salinity.  相似文献   

16.
Abstract The ethylene-releasing compound 2-chloroethylphosphonic acid (ethephon) stimulates germination of dormant seeds under laboratory conditions and it may prove to be an effective means of administering ethylene to promote germination of seeds in the field. We examined the decomposition of ethephon in different soils to determine which properties of soils influence the activity (ethylene release) of ethephon. The release of ethylene from ethephon was not affected by the type of soil, the texture, the presence of organic matter, or levels of extractable SO2?4, PO3?4 NO?3, K+ or Na+. The rate of decomposition was, however, dependent on soil pH and was influenced by the soil moisture content. Very little ethylene was released from ethephon in soils with a pH <7.7 and with a moisture content < 10%.  相似文献   

17.
Germination of Beauveria bassiana (Bb) and Metarhizium anisopliae (Ma) conidia determined from a fast-rehydration (FR) protocol were compared to those obtained when dry conidia were subjected to slow rehydration (SR) by holding under high humidity conditions prior to aqueous suspension. Differences in viability estimates obtained using the FR vs. SR protocols increased markedly after conidia were exposed to various stress factors in storage (high aw, temperature, and O2 concentrations), with the SR protocol producing higher estimates of viability in all cases. After Bb conidia were stored under moist conditions for 21 days at 25 °C, the SR estimate of viability was >21% greater than the FR estimate. In jars flushed with different O2 concentrations and stored at 50 °C for 34 days, proportional differences between protocols varied, depending on water activity, from 18-44% in jars flushed with 0% O2 (100% N2) to as high as 63-93% when treated with 21-22% O2. For conidia stored over a broad range of moderate to high temperatures in the absence of O2, SR-FR differences were ?9% at 25-40 °C but 30% at 50 °C. Germination of stressed Bb and Ma conidia increased substantially when incubation time on the germination substrate was increased from 24 to 72 h, whereas germination of non-stressed conidia showed little change. Conidia debilitated by stress were characterized by hypersensitivity to lethal imbibitional damage (damage that is mitigated by slow rehydration) and slow germination. Viability protocols that may provide more reliable assessments of overall mycopesticide quality are discussed.  相似文献   

18.
When barley seeds imbibe water, the O2 uptake of non-dormantseeds is considerably less than that of dormant seeds for atleast the first 6 h, irrespective of the rate at which the seedshad previously lost dormancy. During the initial 6 h of imbibition, the CO2 output of dormantbarley seeds is usually only slightly greater than and sometimesno different from that of nondormant seeds. The CO2 output ofdormant seeds is reduced by about 66 percent by millimolar KCN,whereas that of non-dormant seeds is decreased by about 12–13per cent only. The CO2 output of dormant barley in nitrogenis considerably less than the CO2 output of non-dormant seedsunder the same conditions. Dormant rice seeds also show a higher initial O2 uptake thannon-dormant seeds, though this is not generally as marked asin barley. Similarly, the initial CO2 output of dormant seedsis distinctly greater than that of non-dormant seeds, but inmillimolar KCN it is depressed to a greater extent than in non-dormantseeds. In nitrogen, the CO2 outputs of dormant and non-dormantseeds were found to be the same. Consequently, unlike barley,dormant rice seeds appear to be as capable of carrying out alcoholicfermentation under anaerobic conditions as nondormant seeds. In barley, increasing the O2 tension from 21 per cent to 100per cent increased the oxygen uptake of dormant seeds more thanthat of non-dormant seeds (an increase of 53 per cent as against20–23 Per cent). In dormant seeds there was a concomitantincrease in CO2 output (about 50 per cent), but the CO2 outputof non-dormant seeds was hardly affected. High concentrations of CO2 are inhibitory to the germinationof both dormant and non-dormant barley seeds. At a concentrationof 10 per cent, however, CO2 is inhibitory only to dormant seeds,although at 2.5–5 per cent it is sometimes stimulatoryto the germination of dormant seeds. A 24–h treatmentwith appropriate concentrations of ethanol, lactic acid, oracetaldehyde is also stimulatory to the germination of dormantbarley seeds. Histochemical investigations in barley indicated the presenceof peroxidase, cytochrome oxidase, and -glycero-phosphate dehydrogenasein the embryo, aleurone layer, and in a layer associated withthe testa. A number of other redox enzymes were detected inthe embryo and aleurone layer only. No differences in distributionor intensity of activity were detected between dormant and nondormantseeds.  相似文献   

19.
Seeds of Hancornia speciosa germinated best at a temperatureof 20–30 °C. The viability of the seeds during storagewas short and the best storage conditions for viability entailedkeeping the seeds in polyethylene bags. Seed viability was maintainedonly when the seeds were stored at a moisture content above30%; storage conditions which allowed dehydration resulted ina rapid loss of viability (the seeds showed recalcitrant behaviour). Low temperature during storage did not improve longevity. Arelationship between germination and moisture content was established,but when the moisture content fell below 25% there was a drasticreduction of germination. After 9 weeks of storage, even athigh moisture content, seeds lost viability. Loss of seed viability during seed dehydration was associatedwith increased leakage of electrolytes and organic solutes,and reduced tetrazolium staining during subsequent imbibition. Hancornia speciosa, germination, recalcitrant seeds, storage, moisture  相似文献   

20.
《Aquatic Botany》2005,83(3):206-218
Seed germination was evaluated for Annona glabra L. and Pachira aquatica Aubl. in the wetland conditions of La Mancha, Veracruz, Mexico. These species have recalcitrant seeds and hydrochoral dispersal. Germination experiments were carried out under varying moisture (high, middle, and low) and light (below canopy and open sky) levels as well as after being stored in contrasting natural conditions. Seeds were stored both floating in water and buried in wetland soil for 15, 30, 60, and 90 days. P. aquatica seeds germinated faster in low and medium moisture, regardless of light intensity. After 45 days, for example, they exhibited 87–73% germination in medium-moisture/canopy and low-moisture/canopy treatments, respectively. In high moisture, seeds reached similar percentages after 60 days (80%). Storage by burial caused the death of seeds regardless the time they spent underground, while those stored in water germinated at a rate of over 90%. A. glabra seeds germinated better (98%) in low-moisture/sunny conditions. As to storage, they responded favorably to both burial and water techniques but germinated more readily in treatments that involved a long storage period. Evaluation of the germination behavior of A. glabra and P. aquatica seeds subject to varying in situ storage and germination conditions illustrates the response capacity of each species during early phases of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号