首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new rapid, sensitive and convenient procedure is presented allowing determination of dUTPase activity. With [5-(3)H]dUTP used as the substrate, dUTPase, converts it to the corresponding monophosphate and is coupled with thymidylate synthase-catalyzed reaction, resulting in tritium release from [5-(3)H]dUMP. Following charcoal absorption of the labeled nuleotides, radioactivity of tritiated water is determined. The new assay was tested to show comparable results with a previously described assay, based on measuring dUTPase-catalyzed [5-(3)H]dUMP production.  相似文献   

2.
The structure of thymidylate synthase complementing protein with substrates dUMP and FAD, presented in this issue of Structure, sheds light on a fascinating new catalytic mechanism, suggests a strategy for the design of new antimicrobial compounds, and highlights the promise of proteomics in medicine.  相似文献   

3.
Agrawal N  Hong B  Mihai C  Kohen A 《Biochemistry》2004,43(7):1998-2006
The enzyme thymidylate synthase (TS) catalyzes a complex reaction that involves forming and breaking at least six covalent bonds. The physical nature of the hydride transfer step in this complex reaction cascade has been studied by means of isotope effects and their temperature dependence. Competitive kinetic isotope effects (KIEs) on the second-order rate constant (V/K) were measured over a temperature range of 5-45 degrees C. The observed H/T ((T)V/K(H)) and D/T ((T)V/K(D)) KIEs were used to calculate the intrinsic KIEs throughout the temperature range. The Swain-Schaad relationships between the H/T and D/T V/K KIEs revealed that the hydride transfer step is the rate-determining step at the physiological temperature of Escherichia coli (20-30 degrees C) but is only partly rate-determining at elevated and reduced temperatures. H/D KIE on the first-order rate constant k(cat) ((D)k = 3.72) has been previously reported [Spencer et al. (1997) Biochemistry 36, 4212-4222]. Additionally, the Swain-Schaad relationships between that (D)k and the V/K KIEs reported here suggested that at 20 degrees C the hydride transfer step is the rate-determining step for both rate constants. Intrinsic KIEs were calculated here and were found to be virtually temperature independent (DeltaE(a) = 0 within experimental error). The isotope effects on the preexponential Arrhenius factors for the intrinsic KIEs were A(H)/A(T) = 6.8 +/- 2.8 and A(D)/A(T) = 1.9 +/- 0.25. Both effects are significantly above the semiclassical (no-tunneling) predicted values and indicate a contribution of quantum mechanical tunneling to this hydride transfer reaction. Tunneling correction to transition state theory would predict that these isotope effects on activation parameters result from no energy of activation for all isotopes. Yet, initial velocity measurements over the same temperature range indicate cofactor inhibition and result in significant activation energy on k(cat) (4.0 +/- 0.1 kcal/mol). Taken together, the temperature-independent KIEs, the large isotope effects on the preexponential Arrhenius factors, and a significant energy of activation all suggest vibrationally enhanced hydride tunneling in the TS-catalyzed reaction.  相似文献   

4.
The use of trichloroacetic acid as a protein precipitant and denaturant in the quantitative measurement of covalent complexes of thymidylate synthase is described. Enzyme inactivated with N[3H]ethylmaleimide and inhibitory ternary complex (formed with native enzyme, 5-[6-3H]fluoro-2'-deoxyuridylate, and methylenetetrahydrofolate) served as reagents which were used to establish the conditions under which trichloroacetic acid precipitation, washing, and solubilization steps provided quantitative results. The ternary complex formed by dihydrofolate reductase with [3H]methotrexate and NADPH was used as a control to assess whether tight, but noncovalent, enzyme:ligand complexes survived trichloroacetic acid precipitation. The fact that no counts above background were detected in the pellet of precipitated protein demonstrated that the noncovalent complexes were completely dissociated by this treatment. The dynamic range of linear response for the inhibitory ternary complex of thymidylate synthase spanned five orders of magnitude, and the assay detected levels of enzyme as low as 10 fmol, a value which was essentially limited by the specific radioactivity of 5-[6-3H]fluoro-2'-deoxyuridylate. The ability of the enzyme to bind 5-[6-3H]fluoro-2'-deoxyuridylate specifically, as measured by the trichloroacetic acid assay, generated a specific binding value of 13.4 nmol of enzyme/mg protein (assuming a binding ratio of 1.5 for the inhibitory ternary complex). Specific binding values were compared to specific activity values (obtained from the spectrophotometric assay) at each stage of purification of the enzyme from Lactobacillus casei and were found to give parallel results. The characteristics of the trichloracetic acid assay procedure, which exclusively detects covalent enzyme-ligand adducts, are compared to those for other ligand binding assays for thymidylate synthase.  相似文献   

5.
Human thymidylate synthase has been crystallized in the absence of ligands and diffracts beyond 3.0 A. The protein was cloned and expressed in Escherichia coli and then crystallized from ammonium sulfate in the presence of beta-mercaptoethanol at a variety of pH values. The crystals are trigonal in the space-group P3(1)21; the unit cell dimensions are a = b = 96.7 A, c = 84.1 A.  相似文献   

6.
Saturation site-directed mutagenesis of thymidylate synthase   总被引:9,自引:0,他引:9  
We have subjected 12 different codons of a synthetic Lactobacillus casei thymidylate synthase (TS) gene to saturation site-directed mutagenesis to create amino acid "replacement sets" at each of those positions. The target residues were chosen because they are highly conserved and because they are important for the structure and function of the protein as indicated by solution and structural studies. The mutagenesis procedure involved excision of a fragment of the synthetic gene containing the target codon, followed by its replacement with a mixture of oligonucleotides which code for all 20 amino acids and the amber stop codon. TS mutants were identified by DNA sequencing, and catalytically active mutants were identified by genetic complementation using a Thy- strain of Escherichia coli. Only 3 of the 12 target amino acids examined were essential for TS activity; and of the 125 total mutants identified, 57 were catalytically active. These results point to a high degree of plasticity of TS in accommodating function with structural change.  相似文献   

7.
Each of the two active sites of thymidylate synthase contains amino acid residues contributed by the other subunit. For example, Arg-178 of one monomer binds the phosphate group of the substrate dUMP in the active site of the other monomer [Hardy et al. (1987) Science 235, 448-455]. Inactive mutants of such residues should combine with subunits of other inactive mutants to form heterodimeric hybrids with one functional active site. In vivo and in vitro approaches were used to test this hypothesis. In vivo complementation was accomplished by cotransforming plasmid mixtures encoding pools of inactive Arg-178 mutants and pools of inactive Cys-198 mutants into a host strain deficient in thymidylate synthase. Individual inactive mutants of Arg-178 were also cotransformed with the C198A mutant. Subunit complementation was detected by selection or screening for transformants which grew in the absence of thymidine, and hence produced active enzyme. Many mutants at each position representing a wide variety of size and charge supported subunit complementation. In vitro complementation was accomplished by reversible dissociation and unfolding of mixtures of purified individual inactive Arg-178 and Cys-198 mutant proteins. With the R178F + C198A heterodimer, the Km values for dUMP and CH2H4folate were similar to those of the wild-type enzyme. By titrating C198A with R178F under unfolding-refolding conditions, we were able to calculate the kcat value for the active heterodimer. The catalytic efficiency of the single wild-type active site of the C198A + R178F heterodimer approaches that of the wild-type enzyme.  相似文献   

8.
Thymidylate synthase (TS) is a well-recognized target for anticancer chemotherapy. Due to its key role in the sole de novo pathway for thymidylate synthesis and, hence, DNA synthesis, it is an essential enzyme in all life forms. As such, it has been recently recognized as a valuable new target against infectious diseases. There is also a pressing need for new antimicrobial agents that are able to target strains that are drug resistant toward currently used drugs. In this context, species specificity is of crucial importance to distinguish between the invading microorganism and the human host, yet thymidylate synthase is among the most highly conserved enzymes. We combine structure-based drug design with rapid synthetic techniques and mutagenesis, in an iterative fashion, to develop novel antifolates that are not derived from the substrate and cofactor, and to understand the molecular basis for the observed species specificity. The role of structural and computational studies in the discovery of nonanalog antifolate inhibitors of bacterial TS, naphthalein and dansyl derivatives, and in the understanding of their biological activity profile, are discussed.  相似文献   

9.
A series of 2'-fluoro-substituted dUMP/FdUMP analogues were synthesized, their interaction with human recombinant thymidylate synthase investigated, and structural (1)H and (19)F NMR study of the corresponding nucleosides performed. While 2'-F-dUMP (fluorine in the "down" configuration), in striking contrast to 2'-F-ara-UMP (fluorine in the "up" configuration) and 2',2'-diF-dUMP, showed substrate activity, 2'-F-ara-UMP and 2',2'-diF-dUMP were classic inhibitors, and 2',5-diF-ara-UMP behaved as a strong slow-binding inhibitor, suggesting the 2'-F substituent in the "up" position to interfere with the active center cysteine thiol addition to the pyrimidine C(6) and the pyrimidine C(5)-F to prevent this interference. In support, the direct through space heteronuclear coupling J(HF) was observed for the fluorine "up" derivatives, 2'-F-ara-U and 2',5-diF-ara-U, causing the splitting of the H(6) resonance lines. The absence of such splitting in 2',2'-diF-dUrd, indicating an unusual orientation of the base in relation to the furanose, was associated with an exceptionally weak interaction with the enzyme.  相似文献   

10.
11.
Previous studies have shown that human TS mRNA translation is controlled by a negative autoregulatory mechanism. In this study, an RNA electrophoretic gel mobility shift assay confirmed a direct interaction between Escherichia coli (E.coli) TS protein and its own E.coli TS mRNA. Two cis-acting sequences in the E.coli TS mRNA protein-coding region were identified, with one site corresponding to nucleotides 207-460 and the second site corresponding to nucleotides 461-807. Each of these mRNA sequences bind TS with a relative affinity similar to that of the full-length E.coli TS mRNA sequence (IC50 = 1 nM). A third binding site was identified, corresponding to nucleotides 808-1015, although its relative affinity for TS (IC50 = 5.1 nM) was lower than that of the other two cis-acting elements. E.coli TS proteins with mutations in amino acids located within the nucleotide-binding region retained the ability to bind RNA while proteins with mutations at either the nucleotide active site cysteine (C146S) or at amino acids located within the folate-binding region were unable to bind TS mRNA. These studies suggest that the regions on E.coli TS defined by the folate-binding site and/or critical cysteine sulfhydryl groups may represent important RNA binding domains. Further evidence is presented which demonstrates that the direct interaction with TS results in in vitro repression of E.coli TS mRNA translation.  相似文献   

12.
Thymidylate synthase (TS) is a critical chemotherapeutic target and intracellular levels of TS are an important determinant of sensitivity to TS inhibitors. Translational autoregulation represents one cellular mechanism for controlling the level of expression of TS. This mechanism involves the binding of TS protein to its own messenger RNA (mRNA), thus, repressing translational efficiency. The presence of excess substrate or inhibitors of TS leads to derepression of protein binding to mRNA, resulting in increased translational efficiency and ultimately increased levels of TS protein. TS protein has been shown to bind to two distinct areas on its mRNA. The goal of the present work is to define the TS domains responsible for this interaction. Using a separate series of overlapping 17-mer peptides spanning the length of both the human and Escherichia coli TS sequences, we have identified six potential domains located in the interface region of the TS protein that bind TS mRNA. The identified domains that bind TS mRNA include three concordant regions in both the human and E. coli peptide series. Five of the six binding peptides contain at least one invariant arginine residue, which has been shown to be critical in other well-defined protein-RNA interactions. These data suggest that the identified highly conserved protein domains, which occur at the homodimeric interface of TS, represent potential participating sites for binding of TS protein to its mRNA.  相似文献   

13.
A rapid assay for thymidylate synthetase   总被引:7,自引:0,他引:7  
  相似文献   

14.
15.
Agrawal N  Lesley SA  Kuhn P  Kohen A 《Biochemistry》2004,43(32):10295-10301
The ThyA gene that encodes for thymidylate synthase (TS) is absent in the genomes of a large number of bacteria, including several human pathogens. Many of these bacteria also lack the genes for dihydrofolate reductase (DHFR) and thymidine kinase and are totally dependent on an alternative enzyme for thymidylate synthesis. Thy1 encodes flavin-dependent TS (FDTS, previously denoted as TSCP) and shares no sequence homology with classical TS genes. Mechanistic studies of a FDTS from Thermotoga maritima (TM0449) are presented here. Several isotopic labeling experiments reveal details of the catalyzed reaction, and a chemical mechanism that is consistent with the experimental data is proposed. The reaction proceeds via a ping-pong mechanism where nicotinamide binding and release precedes the oxidative half-reaction. The enzyme is primarily pro-R specific with regard to the nicotinamide (NADPH), the oxidation of which is the rate-limiting step of the whole catalytic cascade. An enzyme-bound flavin is reduced with an isotope effect of 25 (consistent with H-tunneling) and exchanges protons with the solvent prior to the reduction of an intermediate methylene. A quantitative assay was developed, and the kinetic parameters were measured. A significant NADPH substrate inhibition and large K(M) rationalized the slow activity reported for this enzyme in the past. These and other findings are compared with classical TS (ThyA) catalysis in terms of kinetic and molecular mechanisms. The differences between the FDTS proposed mechanism and that of the classical TS are striking and invoke the notion that mechanism-based drugs will selectively inhibit FDTS and will not have much effect on human (and other eukaryotes) TS. Since TS activity is essential to DNA replication, the unique mechanism of FDTS makes it an attractive target for antibiotic drug development.  相似文献   

16.
Wu ZL 《PloS one》2011,6(8):e23172
Kinases use adenosine-5'-triphosphate (ATP) as the donor substrate and generate adenosine-5'-diphosphate (ADP) as a product. An ADP-based phosphatase-coupled kinase assay is described here. In this assay, CD39L2, a nucleotidase, is added into a kinase reaction to hydrolyze ADP to AMP and phosphate. The phosphate is subsequently detected using malachite green phosphate-detection reagents. As ADP hydrolysis by CD39L2 displays a first-order rate constant, relatively simple equations are derived to calculate the coupling rate and the lagging time of the coupling reaction, allowing one to obtain kinase kinetic parameters without the completion of the coupling reaction. ATP inhibition of CD39L2-catalyzed ADP hydrolysis is also determined for correction of the kinetic data. As examples, human glucokinase, P. chrysogenum APS kinase and human ERK1, kinases specific for sugar, nucleotide and protein respectively, are assayed. To assess the compatibility of the method for high-throughput assays, Z' factors >0.5 are also obtained for the three kinases.  相似文献   

17.
Two important polymorphisms of folate cycle enzymes, methylenetetrahydrofolate reductase (MTHFR) C677T and thymidylate synthase (TS) enhancer region (TSER) 28-bp tandem repeat, are related to risk of various types of cancer, including brain tumors, although there are few studies on this subject. A case-control study of these two polymorphisms in astrocytomas of different grades was carried out using polymerase chain reaction-restriction fragment length polymorphism, also determining the immunohistochemical expression of TS. The MTHFR 677 TT genotype was less associated with astrocytic tumors (odds ratio [OR]=0.00; p=0.0238), but the TSER polymorphism did not show any significant association. Combined genotype TT-double repeats/triple repeats (2R/3R) had a protective effect against astrocytomas (OR=0.00; p=0.0388). Expression of TS protein was observed in the majority of cases, with grade IV tumors being the exception. Moreover, the median H-score for the pilocytic astrocytomas was significantly higher when compared with that for diffuse tumors. There was an inverse correlation between the 2R/2R genotype and the highest TS-expressing tumors, and 3R/3R was relatively more frequent among the tumors grouped in the third and fourth quartiles. Our results provide support for the role of MTHFR and TS polymorphism in gliomagenesis, possibly because of the alteration of DNA methylation and repair status. Moreover, high levels of TS expression were detected in these tumors.  相似文献   

18.
An isotopic assay for thymidylate synthetase   总被引:20,自引:0,他引:20  
D Roberts 《Biochemistry》1966,5(11):3546-3548
  相似文献   

19.
1. Pyridoxal phosphate (PLP) reversibly inhibited thymidylate synthase from Lactobacillus casei with a KI of 0.6-0.9 microM. 2. The inhibition was competitive with dUMP and noncompetitive with 5,10-methylenetetrahydrofolate which is consistent with an ordered addition of substrates. 3. The spectrum of PLP was altered by the addition of thymidylate synthase. The spectral changes suggest formation of a thiohemiacetal with an enzyme sulfhydryl group rather than Schiff base formation with a lysine side chain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号