首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wolfgang Maret 《Biometals》2013,26(2):197-204
Several pathways increase the concentrations of cellular free zinc(II) ions. Such fluctuations suggest that zinc(II) ions are signalling ions used for the regulation of proteins. One function is the inhibition of enzymes. It is quite common that enzymes bind zinc(II) ions with micro- or nanomolar affinities in their active sites that contain catalytic dyads or triads with a combination of glutamate (aspartate), histidine and cysteine residues, which are all typical zinc-binding ligands. However, for such binding to be physiologically significant, the binding constants must be compatible with the cellular availability of zinc(II) ions. The affinity of inhibitory zinc(II) ions for receptor protein tyrosine phosphatase β is particularly high (K i = 21 pM, pH 7.4), indicating that some enzymes bind zinc almost as strongly as zinc metalloenzymes. The competitive pattern of zinc inhibition for this phosphatase implicates its active site cysteine and nearby residues in the coordination of zinc. Quantitative biophysical data on both affinities of proteins for zinc and cellular zinc(II) ion concentrations provide the basis for examining the physiological significance of inhibitory zinc-binding sites in proteins and the role of zinc(II) ions in cellular signalling. Regulatory functions of zinc(II) ions add a significant level of complexity to biological control of metabolism and signal transduction and embody a new paradigm for the role of transition metal ions in cell biology.  相似文献   

2.
Zinc is involved in virtually all aspects of cellular and molecular biology as a catalytic, structural, and regulatory cofactor in over 1000 proteins. Zinc binding to proteins requires an adequate supply of zinc and intact molecular mechanisms for redistributing zinc ions to make them available at the right time and location. Several dozen gene products participate in this process, in which interactions between zinc and sulfur donors determine the mobility of zinc and establish coupling between cellular redox state and zinc availability. Specifically, the redox properties of metallothionein and its apoprotein thionein are critical for buffering zinc ions and for controlling fluctuations in the range of picomolar concentrations of "free" zinc ions in cellular signaling. Metallothionein and other proteins with sulfur coordination environments are sensitive to redox perturbations and can render cells susceptible to injury when oxidative stress compromises the cellular redox and zinc buffering capacity in chronic diseases. The implications of these fundamental principles for zinc metabolism in type 2 diabetes are briefly discussed.  相似文献   

3.
Mammalian metallothioneins are redox-active metalloproteins. In the case of zinc metallothioneins, the redox activity resides in the cysteine sulfur ligands of zinc. Oxidation releases zinc, whereas reduction re-generates zinc-binding capacity. Attempts to demonstrate the presence of the apoprotein (thionein) and the oxidized protein (thionin) in tissues posed tremendous analytical challenges. One emerging strategy is differential chemical modification of cysteine residues in the protein. Chemical modification distinguishes three states of the cysteine ligands (reduced, oxidized and metal-bound) based on (i) quenched reactivity of the thiolates when bound to metal ions and restoration of thiol reactivity in the presence of metal-ion-chelating agents, and (ii) modification of free thiols with alkylating agents and subsequent reduction of disulfides to yield reactive thiols. Under normal physiological conditions, metallothionein exists in three states in rat liver and in cell lines. Ras-mediated oncogenic transformation of normal HOSE (human ovarian surface epithelial) cells induces oxidative stress and increases the amount of thionin and the availability of cellular zinc. These experiments support the notion that metallothionein is a dynamic protein in terms of its redox state and metal content and functions at a juncture of redox and zinc metabolism. Thus redox control of zinc availability from this protein establishes multiple methods of zinc-dependent cellular regulation, while the presence of both oxidized and reduced states of the apoprotein suggest that they serve as a redox couple, the generation of which is controlled by metal ion release from metallothionein.  相似文献   

4.
In the cellular environment, the sulfur ligands in zinc/thiolate coordination sites of proteins can be oxidized with concomitant mobilization of zinc. The characterization of such "redox zinc switches" requires the determination of three species, i.e., the zinc-containing complex and the zinc-free complex with the thiolate ligands either reduced or oxidized. Differential chemical modification of thiol groups in the presence and absence of either reducing or chelating agents allows the analytical speciation of such systems as demonstrated here for the characterization of the redox and metal-binding states of mammalian metallothionein. Thiol derivatization with 6-iodoacetamidofluorescein in the presence and absence of the reducing agent tris(2-carboxyethyl)phosphine, high-performance liquid chromatographic separation, and photometric detection are employed to determine the reduced and oxidized protein. Because the holoprotein reacts only in the presence of a chelating agent such as ethylenediaminetetraacetate (EDTA) its amount can be determined as the difference between measurements in the presence and the absence of EDTA. This method is applied to the study of the chemical and enzymatic oxidation of metallothionein/thionein. It should also greatly facilitate the characterization of the redox and metal-binding properties of zinc/thiolate coordination environments of other proteins such as zinc finger proteins.  相似文献   

5.
Although the total zinc content of cells generally approximates 0.2 mM, the cytosolic free zinc ion concentration is negligible (subnanomolar concentrations). However, all reported studies of effects of zinc on cellular respiration and terminal oxidation involved microM-mM levels of free zinc ions. Prostate cells and their mitochondria accumulate 3-10 fold more zinc than other mammalian cells. We considered that a cytosolic pool of mobile reactive low molecular weight zinc ligands could inhibit respiration and terminal oxidation. The effects of ZnLigands, especially ZnCitrate, versus free Zn++ ions on respiration and terminal oxidation were studied with prostate and liver mitochondria. ZnLigands were equally as effective as free Zn++ ions in the inhibition of respiration and terminal oxidation of both prostate and liver mitochondria, which supports our concept that zinc can be transferred from cytosolic donor ZnLigands directly to zinc-binding sites of terminal oxidation components. Also, the respiration and specific activities of terminal oxidation components of prostate mitochondria are 20-50% of liver mitochondria. Zinc inhibition and inherently low levels of electron transport components are likely major factors responsible for the low respiration that characterizes prostate cells.  相似文献   

6.
The time courses of induction in rat liver of copper chelatin by copper, cadmium thionein by cadmium, and zinc thionein by copper, cadmium, and zinc were monitorg metal were used in order to avoid toxic effects, being 5 mg zinc, 0.5 mg copper, and 0.25 mg cadmium per kg body weight. Peak times of induction and half times of decay observed were: copper chelatin (9 h, 8.6 h), cadmium thionein (18 h, 6.80 days), and zinc thionein (zinc rats, 18 h, 10.1 h; copper rats, 9 h, 18.2 h; cadmium rats, 24 h, 4.53 days). Administration of actinomycin D (1 mg per kg body weight) at the peak times of induction of the various proteins had no effect on the concentrations of chelatin or cadmium thionein observed up to 24 hours later, but in the case of zinc thionein, induced by zinc, copper, or cadmium, elevated concentrations were observed up to 23 h after administration of the drug. Such behavior is reminiscent of superinduction previously seen with other proteins and enzymes. We postulate that the intracellular concentration of free zinc in liver is of fundamental importance in the induction of zinc thionein, and this can be distributed by exogenous copper or cadmium resulting in the induction of synthesis of zinc thionein.  相似文献   

7.
Fluorescence methods have been instrumental in demonstrating that the structure of human metallothionein in vivo depends on the availability of metal ions and the redox environment. Differential chemical modifications of its cysteine thiols with fluorescent probes allowed determination of three states: metallothionein (zinc-bound thiolate), thionein (free thiols), and thionin (disulfides). Interrogation of its zinc-binding properties with fluorescent chelating agents revealed that the affinities for the seven zinc ions vary over four orders of magnitude. Attachment of fluorescent labels generated metallothionein FRET (fluorescence resonance energy transfer) sensors for investigating its structure and function in living cells.  相似文献   

8.
Since cellular zinc is not freely available as the inorganic ion, zinc proteins must acquire their metal from some other source. But how, when, and where they acquire it is unknown. Metallothionein can participate in the controlled delivery of zinc by binding it with high stability and by mobilizing it through a novel biochemical mechanism that critically depends on the redox activity of the zinc-sulfur bond. Thus, metallothionein activates zinc-depleted alcohol (sorbitol) dehydrogenases by glutathione-modulated zinc transfer. In addition to its catalytic, co-catalytic, and/or structural roles in a myriad of enzymes, zinc also inhibits some enzymes that are not necessarily zinc enzymes, e.g. glyceraldehyde and glycerol phosphate dehydrogenases, and aldehyde dehydrogenase. Zinc inhibits glycerol phosphate dehydrogenase with an IC(50) value of 100 nM. Zinc binding is slow at low pH, but instantaneous at high pH. Thionein, the apoprotein of metallothionein, re-activates the zinc-inhibited enzyme. Tight inhibition by zinc and activation of glycerol phosphate dehydrogenase by thionein, a biological chelating agent, provide further support that modulation of zinc binding by metallothionein and thionein is a physiological mechanism of enzyme regulation. Since glycerol phosphate dehydrogenase is a key enzyme in energy metabolism, the effect of zinc is expected to elicit significant physiological responses.  相似文献   

9.
Fundamental issues in zinc biology are how proteins control the concentrations of free Zn(II) ions and how tightly they interact with them. Since, basically, the Zn(II) stability constants of only two cytosolic zinc enzymes, carbonic anhydrase and superoxide dismutase, have been reported, the affinity for Zn(II) of another zinc enzyme, sorbitol dehydrogenase (SDH), was determined. Its log K is 11.2 +/- 0.1, which is similar to the log K values of carbonic anhydrase and superoxide dismutase despite considerable differences in the coordination environments of Zn(II) in these enzymes. Protein tyrosine phosphatase 1B (PTP 1B), on the other hand, is not classified as a zinc enzyme but is strongly inhibited by Zn(II), with log K = 7.8 +/- 0.1. In order to test whether or not metallothionein (MT) can serve as a source for Zn(II) ions, it was used to control free Zn(II) ion concentrations. MT makes Zn(II) available for both PTP 1B and the apoform of SDH. However, whether or not Zn(II) ions are indeed available for interaction with these enzymes depends on the thionein (T) to MT ratio and the redox poise. At ratios [T/(MT + T) = 0.08-0.31] prevailing in tissues and cells, picomolar concentrations of free Zn(II) are available from MT for reconstituting apoenzymes with Zn(II). Under conditions of decreased ratios, nanomolar concentrations of free Zn(II) become available and affect enzymes that are not zinc metalloenzymes. The match between the Zn(II) buffering capacity of MT and the Zn(II) affinity of proteins suggests a function of MT in controlling cellular Zn(II) availability.  相似文献   

10.
Since cellular zinc is not freely available as the inorganic ion, zinc proteins must acquire their metal from some other source. But how, when, and where they acquire it is unknown. Metallothionein can participate in the controlled delivery of zinc by binding it with high stability and by mobilizing it through a novel biochemical mechanism that critically depends on the redox activity of the zinc–sulfur bond. Thus, metallothionein activates zinc-depleted alcohol (sorbitol) dehydrogenases by glutathione-modulated zinc transfer. In addition to its catalytic, co-catalytic, and/or structural roles in a myriad of enzymes, zinc also inhibits some enzymes that are not necessarily zinc enzymes, e.g. glyceraldehyde and glycerol phosphate dehydrogenases, and aldehyde dehydrogenase. Zinc inhibits glycerol phosphate dehydrogenase with an IC50 value of 100 nM. Zinc binding is slow at low pH, but instantaneous at high pH. Thionein, the apoprotein of metallothionein, re-activates the zinc-inhibited enzyme. Tight inhibition by zinc and activation of glycerol phosphate dehydrogenase by thionein, a biological chelating agent, provide further support that modulation of zinc binding by metallothionein and thionein is a physiological mechanism of enzyme regulation. Since glycerol phosphate dehydrogenase is a key enzyme in energy metabolism, the effect of zinc is expected to elicit significant physiological responses.  相似文献   

11.
Zinc is an effector of insulin/IGF-1 signaling and has insulinomimetic effects, the molecular basis of which is not understood. The present study establishes the capacity of zinc to inhibit protein tyrosine phosphatases (PTPs) as a cause for these effects and, moreover, demonstrates modulation of the insulin response by changes in intracellular zinc. The inhibition of PTPs by zinc occurs at significantly lower concentrations than previously reported. In vitro, zinc inhibits PTPs 1B and SHP-1 with IC(50) values of 17 and 93 nM, respectively. A fluorescent probe with a similar binding constant [FluoZin-3, K(D)(Zn) = 15 nM] detects corresponding concentrations of zinc within cells. Increase of cellular zinc after incubation with both zinc and the ionophore pyrithione augments protein tyrosine phosphorylation, and in particular the phosphorylation of three activating tyrosine residues of the insulin/IGF-1 receptor. Vice versa, specific chelation of cellular zinc with the membrane-permeable N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine suppresses insulin- and IGF-1-stimulated phosphorylation. In the context of the emerging concept that intracellular zinc is tightly regulated and fluctuates dynamically, these results suggest that a pool of cellular zinc modulates phosphorylation signaling.  相似文献   

12.
Cells from the zona glomerulosa of rat adrenals were isolated and maintained for 3 days in primary culture. Specific vasopressin binding was determined by using [3H]vasopressin. [3H]Vasopressin binding was time-dependent (half-time of about 2 min for 6 nM free ligand) and reversible on addition of unlabelled vasopressin (80% dissociation within 30 min). Dose-dependent [3H]vasopressin binding at equilibrium indicated that vasopressin interacted with two populations of sites: high-affinity sites (dissociation constant, Kd = 1.8 nM; maximal binding capacity = 10 fmol/10(6) cells) and low-affinity sites. Vasopressin increased the cellular content of labelled inositol mono-, bis- and tris-phosphate in cells prelabelled with myo-[3H]inositol. The vasopressin concentration eliciting half-maximal inositol phosphate accumulation was very close to the Kd value for vasopressin binding to high-affinity sites. Competition experiments using agonists and antagonists with enhanced selectivity for previously characterized vasopressin receptors indicated that vasopressin receptors from rat glomerulosa cells are V1 receptors of the vascular or hepatic subtype. The detected specific vasopressin-binding sites might represent the specific receptors mediating the mitogenic and steroidogenic effects of vasopressin on glomerulosa cells from rat adrenals.  相似文献   

13.
The possible role of immunomodulatory peptide somatostatin (SRIF) in measles virus (MV)-induced immunopathology was addressed by analysis of SRIF receptors and their coupling to adenylyl cyclase in mitogen-stimulated Jurkat T cells and human peripheral blood mononuclear cells (PBMC). SRIF-specific receptors were assayed in semipurified membrane preparations by using SRIF14 containing iodinated tyrosine at the first position in the amino acid chain ([125I]Tyr1) as a radioligand. A determination of receptor number by saturation of radioligand binding at equilibrium showed that in Jurkat cells, MV infection led to a dramatic decrease in the total receptor number. The virus-associated disappearance of one (Ki2 = 12 +/- 4 nM [mean +/- standard error of the mean [SEM]]; n = 4) of two somatostatin binding sites identified in control Jurkat cells (Ki1 = 78 +/- 3 pM and Ki2 = 12 +/- 4 nM [mean +/- SEM]; n = 4) was also observed. Almost identical results were obtained for phytohemagglutinin-activated human PBMC. In the absence of MV infection, two somatostatin binding sites were present (Ki1 = 111 +/- 31 pM and Ki2 = 17 +/- 2 nM [mean +/- SEM]; n = 2), whereas in MV-infected cells, only the high-affinity (Ki1 = 48 +/- 15 pM [mean +/- SEM]; n = 2) binding site remained. In addition, MV infection reinforced the inhibitory effects of SRIF on adenylyl cyclase activity, since maximal inhibition at 1 microM peptide was 11% +/- 4% in control cells versus 25% +/- 3% (P < 0.05) in infected Jurkat cells. Moreover, MV infection severely impaired the capacity of adenylyl cyclase to be activated directly (by forskolin) or indirectly (via Gs protein-coupled vasoactive intestinal peptide receptor). An assessment of [methyl-3H]thymidine incorporation showed that SRIF increased proliferative responses to mitogens only in control cells, not in MV-infected cells. Altogether, our data emphasize that MV-associated alteration of SRIF transduction appears to be related to the loss of SRIF-dependent increase of mitogen-induced proliferation.  相似文献   

14.
The interleukin 5 receptor (IL-5R) on murine eosinophils and a mouse B cell line (B13) was investigated using iodinated murine IL-5 produced in the baculovirus system. Electrophoretic analysis of this recombinant protein identified a range of bands Mr 26,000 to 32,000 resulting from differential glycosylation. The specific activity and binding kinetics of the iodinated IL-5 (125I-IL-5) were essentially identical to unlabeled material. Both high-affinity (Kd approximately 50 pM) and low-affinity (Kd approximately 1 nM) receptor populations were identified on murine eosinophils. Approximately 50 high-affinity receptors and 10,000 low-affinity receptors were present. This was compared with approximately 2,000 high-affinity (Kd approximately 80 pM) and about 8,000 low-affinity (Kd approximately 3 nM) sites on B13 cells. An antibody that inhibits IL-5 binding to, and proliferation of, B13 cells (R52.120) was also shown to inhibit eosinophil proliferation, suggesting that eosinophils and B cells bear the equivalent IL-5 binding proteins.  相似文献   

15.
The human colon adenocarcinoma cell line HT-29 in culture exhibits a cyclic AMP production system highly sensitive to vasoactive intestinal peptide (VIP), making HT-29 cells a unique cultured cell system for studying the mechanism of VIP action [Laburthe, Rousset, Boissard, Chevalier, Zweibaum & Rosselin (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2772-2775]. The quantitative characteristics of VIP receptors in HT-29 cells and their structural requirement and molecular size were studied. 125I-labeled VIP bound in a time-dependent manner to HT-29 cell homogenates. At equilibrium (60 min incubation at 30 degrees C), unlabelled VIP in the 0.01-10 nM concentration range competed with 125I-VIP for binding to cell homogenates. Scatchard analysis of binding data gave a straight line, indicating that VIP bound to a single population of sites with a KD of 0.12 +/- 0.02 nM and a capacity of 120 +/- 9 fmol/mg of protein. The structural requirement of these receptors was studied with peptides structurally related to VIP, either natural or synthetic. Several peptides inhibited 125I-VIP binding to HT-29 cell homogenates with the following order of potency, which is typical of the human VIP receptor: VIP (IC50 = 0.1 nM) greater than VIP-(2-28)-peptide (IC50 = 13 nM) greater than human growth hormone releasing factor (IC50 = 56 nM) greater than peptide histidine isoleucine amide (IC50 = 80 nM) greater than secretin (IC50 greater than 10 000 nM). To characterize the molecular component(s) of the VIP receptor in HT-29 cells, 125I-VIP was covalently bound to cell homogenates by using the cross-linker dithiobis(succinimidyl propionate). Sodium dodecyl sulphate/polyacrylamide-gel autoradiographic studies of affinity-labelled cell homogenates revealed two major bands, corresponding to 125I-VIP-protein complexes of Mr 66 000 and 16 000. The labelling of the Mr-66 000 component was specific, since it was abolished by native VIP, whereas that of the Mr-16 000 component was not. Densitometric scanning of autoradiographs indicated that the labelling of the Mr-66 000 complex was inhibited by low VIP concentrations in the 0.1-10 nM range (IC50 = 0.6 nM), but was unaffected by 1 microM-glucagon or octapeptide of cholecystokinin. It was also decreased by VIP-(2-28)-peptide with a potency 1% that of VIP. Assuming that one molecule of 125I-VIP bound per molecule of protein, one protein of Mr 63 000 was identified as a component of the VIP receptor in HT-29 cells.  相似文献   

16.
Ivanova E  Ball M  Lu H 《Proteins》2008,71(1):467-475
Zinc-finger proteins are among the most abundant proteins in eukaryotic genomes. Tim10 and all the small Tim proteins of the mitochondrial intermembrane space contain a consensus twin CX(3)C zinc-finger motif. Zn(2+) can bind to the reduced Tim10, but not disulphide bonded (oxidized) protein. However, the zinc-binding reaction of Tim10 and of zinc-finger proteins, in general, is ill-defined. In this study, the thermodynamic and kinetic properties of zinc-binding to reduced Tim10 were investigated using circular dichroism (CD), fluorescence spectrometry, and stopped-flow fluorescence techniques. At equilibrium, coupled with the use of protein fluorescence and metal chelators, the zinc-binding affinity was determined for Tim10 to be about 8 x 10(-10)M. Then, far UV CD was used to investigate the secondary structure change upon zinc-binding of the same set of protein samples at various free Zn(2+) concentrations. Comparison between the results of CD and fluorescence studies showed that the zinc-binding reaction is not a simple one-step process. It involves formation of a binding intermediate that is structurally as unfolded as the apoTim10; subsequently, a degree of folding is induced at increased zinc concentrations in the final complex. Next, the stopped-flow fluorescence technique was used to investigate the kinetic process of the binding reaction. Data analysis shows that the reaction has a single kinetic phase at a low free Zn(2+) concentration ( approximately 1 nM), and a double kinetic phase at a high free Zn(2+) concentration. The kinetic result is consistent with that of the studies at equilibrium. Therefore, a two-step reaction model mechanism is proposed, in which zinc-binding is regulated by the initial selective-binding of Zn(2+) to Cys followed by folding. Implication of the two-step zinc-binding mechanism for Zn(2+) trafficking in the cell is discussed.  相似文献   

17.
1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [125I]iodomelatonin, was examined using an incubation temperature (30 degrees C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [125I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.  相似文献   

18.
Receptors for vasoactive intestinal peptide (VIP) have been characterized in rat lymphoid cells. The interaction of [125I] VIP with blood mononuclear cells was rapid, reversible, specific and saturable. At apparent equilibrium, the binding of [125I] VIP was competitively inhibited by native VIP in the 0.01-100 nM range concentration. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.050 +/- 0.009 nM and a low binding capacity (2.60 +/- 0.28 fmol/10(6) cells), and a low-affinity class with a Kd = 142 +/- 80 nM and a high binding capacity (1966 +/- 330 fmol/10(6) cells). Secretin, glucagon, insulin and somatostatin did not show any effect at a concentration as high as 100 nM. With spleen lymphoid cells, stoichiometric studies were performed. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.100 +/- 0.033 nM and a low binding capacity (4.60 +/- 1.07 fmol/10(6) cells), and low-affinity class with a Kd = 255 +/- 110 nM and high binding capacity (2915 +/- 1160 fmol/10(6) cells). With thymocytes, no binding was obtained under different conditions.  相似文献   

19.
Co-ordination of zinc to the thiol group of cysteine allows mobilization of zinc through oxidation of its ligand. This molecular property links the binding and release of zinc in metallothionein (MT) to the cellular redox state [Maret W. & Vallee B.L. (1998) Proc. Natl Acad. Sci. USA 95, 3483-3488]. Biological disulfides such as glutathione disulfide (GSSG) oxidize MT with concomitant release of zinc, while glutathione (GSH) reduces the oxidized protein to thionein, which then binds to available zinc. Neither of these two redox processes is very efficient, even at high concentrations of GSSG or GSH. However, the GSH/GSSG redox pair can efficiently couple with the MT/thionein system in the presence of a selenium compound that has the capacity to form a catalytic selenol(ate). This coupling provides a very effective means of modulating oxidation and reduction. Remarkably, selenium compounds catalyze the oxidation of MT even under overall reducing conditions such as those prevailing in the cytosol. In this manner, the binding and release of zinc from zinc-thiolate co-ordination sites is linked to redox catalysis by selenium compounds, changes in the glutathione redox state, and the availability of either a zinc donor or a zinc acceptor. The results also suggest that the pharmacological actions of selenium compounds in cancer prevention and other antiviral and anti-inflammatory therapeutic applications, as well as unknown functions of selenium-containing proteins, may relate to coupling between the thiol redox state and the zinc state.  相似文献   

20.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) modulates the function of mature neutrophils by priming for enhanced chemotaxis and oxidative metabolism in response to N-formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe). Our studies establish a relationship between f-Met-Leu-Phe receptor number and affinity and neutrophil chemotaxis and oxidative metabolism. A brief (5- to 15-min) exposure to physiologic concentrations of GM-CSF (10 pM to 100 pM) enhances f-Met-Leu-Phe-induced neutrophil chemotaxis by 85%, correlating with a rapid threefold increase (46,000/cell to 150,000/cell) in high-affinity neutrophil f-Met-Leu-Phe receptors. More prolonged incubation (1 to 2 hr) of neutrophils with GM-CSF is accompanied by a change to low-affinity f-Met-Leu-Phe receptors (Kd = 29 nM to Kd = 99 nM) concomitant with priming for enhanced neutrophil oxidative metabolism. Moreover, enhanced chemotactic responses to f-Met-Leu-Phe are no longer evident after more prolonged incubation of neutrophils with GM-CSF. These results show that a single lymphokine (GM-CSF) induces sequential changes in neutrophil f-Met-Leu-Phe receptor number and affinity that may enhance different physiologic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号