首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intraoperative measurement of hip posture is the basis for assessing hip range of motion (ROM) and predicting postoperative functional limits allowable for activities of daily living. Although computer navigation for total hip arthroplasty (THA) has improved the accuracy of intraoperative ROM evaluation, it has not gained widespread popularity due to its complex and time-consuming protocol. We therefore developed an inertial measurement unit-based hip smart trial system (IMUHST) for intraoperative monitoring of hip posture. An in vitro validation experiment was conducted using bone models with a three-dimensional measurement model as the reference standard. The absolute mean error, Bland – Altman analysis and intra-class correlation coefficient demonstrated that the validity and reliability of this system meets the requirement for clinical application. Given that monitoring posture is the basis for evaluating the direction(s) of potential impingement, subluxation and dislocation, the IMUHST is a promising development direction of computer assisted surgery in THA.  相似文献   

2.
Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability.  相似文献   

3.
While others have reported short-term comparisons between various minimally invasive surgical (MIS) approaches to total hip arthroplasty (THA) and their conventional analogues, longer-term data is lacking, as is information indicating whether MIS approaches to THA provide a biomechanically complete recovery. Furthermore, different MIS approaches have not been compared. Our approaches of interest were a one-incision modified Watson-Jones, and a two-incision approach. Hypotheses: (1) There are significant differences in gait recovery patterns between the two surgical groups and (2) THA subjects have significant differences in function one year after surgery compared to control subjects. To test these hypotheses, THA candidates (n=26) were randomized to receive one of these MIS approaches and evaluated preoperatively, and postoperatively at 3 weeks, and at 3, 6 and 12 months. Evaluations included three-dimensional gait analysis and 24-hour step-counts. The same data were obtained from 25 control subjects. Recovery time-course was assessed using repeated measures ANOVA. T-tests were used to compare controls with the pooled group of THA subjects. We found no differences between the two THA surgical groups regarding the time-course of recovery (p≥0.591). Although recovery was statistically complete by 3 months postoperatively for all variables, there were significant differences from controls at 12 months. Most notably, the external hip adduction moment, which reflects hip abductor function, was more than one standard deviation below normal (p<0.001). THA subject inactivity could not explain the gait differences, since one year after surgery daily step counts were not significantly different from controls (p=0.346). More work is necessary to determine ways to improve biomechanical outcomes for today's patients with high expectations for function and implant longevity.  相似文献   

4.
In 17 patients with unilateral hip disease who underwent total hip arthroplasty (THA), the gait was analyzed preoperatively and 1, 3, 6, and 12 months after unilateral THA using a Vicon system to assess the recovery of walking speed and symmetrical movement of the hip, knee, ankle, and pelvis. The walking speed of these patients reached that of normal Japanese persons by 12 months after surgery. Walking speed was correlated with the range of hip motion on the operated side at 1 month postoperatively, and was correlated with the hip joint extension moment of force on both sides from 3 to 6 months after surgery. Before THA, asymmetry was observed in the range of the hip motion, maximum hip flexion, maximum hip extension, maximum knee flexion, as well as in pelvic obliquity, pelvic tilt, and pelvic rotation. There were no differences of the stride length or step length between both sides throughout the observation period. The preoperative range of hip flexion on the operated side during a gait cycle (21.3+/-7.9 degrees ) was significantly smaller than on the non-operated side (46.7+/-7.1 degrees ), and the difference between sides was still significant at 12 months after surgery (35.1+/-6.2 degrees on the operated side and 43.6+/-5.7 degrees on the non-operated side). The majority (74%) of the difference in hip motion range during this period was due to the difference in maximum extension of the hip. The increase in the range of pelvic tilt and the range of motion of the opposite hip showed an inverse correlation with the range of motion of the operated hip, suggesting a compensatory preoperative role. However, this correlation became insignificant after 6 months postoperatively. Asymmetry of the range of hip motion persisted at 12 months after THA in patients with unilateral coxoarthropathy during free level walking, while the operation normalized the spatial asymmetry of other joints and the walking speed prior to the recovery of hip motion.  相似文献   

5.
Dislocation of the artificial joint is a serious complication of total hip replacement. Various factors with an influence on dislocation stability were determined clinically. Our goal was to develop a method for evaluating experimentally the parameters implant design, position and the load situation for their influence on joint stability. With the newly developed testing device the range of motion to impingement and to dislocation can be determined at different implant positions. In addition, the rotational moments on subluxation, i.e. the "levering out" of the femoral head, can be determined. By way of example several hip implants were examined during movements associated with dislocation, e.g. (internal-)rotation in 90 degrees flexion and 0 degrees adduction as well as with (external-)rotation in combination with 10 degrees extension and 15 degrees adduction. Irrespective of implant design and position, the following movement phases can be differentiated: undisturbed motion, impingement, subluxation and, finally, complete dislocation of the head. On the basis of the range of motion of the specific phases, the moments occurring and the direction of dislocation, different implant systems can be compared. In this study the influence of the head diameter on the dislocation stability of the hip endoprosthesis is shown. With the aid of the model presented herein, a data set showing the most favourable and/or most dislocation stable implant position can be acquired for different combinations of the implant components. Additionally, useful information for implant design can be deduced and applied to new developments and/or modifications of existing implant components.  相似文献   

6.
Hip and lumbar spine disorders often coexist in patients with total hip arthroplasty (THA). The current study aimed to reveal pelvic motion pathology and altered trunk and hip muscle recruitment patterns relating to pelvic motion in patients with THA. Twenty-one women who underwent THA and 12 age-matched healthy women were recruited. Pelvic kinematics and muscle recruitment patterns (i.e., amplitude, activity balance, and onset timing) of the gluteus maximus, semitendinosus, multifidus, and erector spinae were collected during prone hip extension. Compared with healthy subjects, the patients showed increased pelvic motion, especially ventral rotation, decreased multifidus muscle activity relative to the hip extensors, and delayed onset of multifidus activity, despite reaction times and speeds of leg motion not being significantly different between the groups. Furthermore, while contributing factors associated with ventral pelvic rotation were not found, delayed onset of multifidus activity was detected as a factor related to the increased anterior tilt of the pelvis (r = 0.47, p < 0.05) in patients with THA. These results suggest that patients with THA have dysfunction of the stabilizer muscles of the lumbopelvic region along with increased pelvic motion.  相似文献   

7.
Quantifying soft-tissue tension around the hip joint during total hip arthroplasty remains difficult. In this study, a three-dimensional computer-aided design model was developed to clarify how component position in total hip arthroplasty contributes to the primary cause of posterior dislocation in cases of flexion, adduction and internal rotation. To better understand the influences of anteversion angle of the acetabular component, its effects on the primary causes of dislocations and the range of motion were investigated. Three different primary dislocation mechanisms were noted: impingement of the prosthetic femoral neck on the cup liner; impingement of the osseous femur on the osseous pelvis; and spontaneous dislocation caused by soft-tissue traction without impingement. Spontaneous dislocation could be detected by calculating hip forces at any thigh position using the computer-aided design model developed. In computer analysis, a transition from prosthetic impingement rate to osseous impingement rate occurred with increasing anteversion angle of the acetabular component. Spontaneous dislocation was detected at angles > 10° of anteversion of the acetabular component when flexion occurred with extreme adduction and internal rotation. This study demonstrated the possibility of spontaneous dislocation that results not from prosthetic or bony impingement but from muscle traction with increased range of motion.  相似文献   

8.
A biomechanical model of a squat exercise performed on a device using a bar that is restricted to a linear motion was developed. Hip and knee moments were evaluated at varying foot positions. The range of motion of the exercise was limited by the knee joint angle beginning at an 80 degrees angle (flexed) to a 179 degrees joint angle (extended). Variations in foot placement were evaluated for differences in torque applied about the transverse axes of the user's knee and hip joints. Because the user's feet were positioned farther forward (anterior), the moment about the knee decreased whereas the moment about the hip increased. Positive moments were those that resulted in forces to flex the knee and hip joints. Positive knee moments were determined in all conditions when the knee was flexed and became negative when the knee was at or near full extension. The model always produced positive moments about the hip. Thus, foot position is a critical factor in hip and knee moments, and therefore in the muscle groups stressed, in a linear motion squat type exercise.  相似文献   

9.
Accurately locating the hip joint center is a challenging and important step in many biomechanical investigations. The purpose of this study was to test the accuracy and robustness of a "pivoting" algorithm used to locate the hip center. We tested the performance of this algorithm with data acquired by manipulating a ball and socket model of the hip through several motion patterns. The smallest mean errors of 2.2+/-0.2 mm occurred with a circumduction motion pattern, while the largest errors of 4.2+/-1.3 mm occurred with single-plane motion (e.g., flexion/extension). Introducing random noise with an amplitude of 30 mm increased the errors by only 1.3+/-0.5 mm with a circumduction motion pattern. The pivoting algorithm performs well in the laboratory, and further work is warranted to evaluate its performance in a clinical setting.  相似文献   

10.
Fan L  Dang X  Wang K 《PloS one》2012,7(6):e39531
The present study was conducted to compare bipolar hemiarthroplasty (BA) with total hip arthroplasty (THA) in treatment of unstable intertrochanteric fractures in elderly osteoporotic patients. The THA group included 14 males and 26 females with a mean age of 73.4 years, and the BA group included 27 males and 45 females with a mean age of 76.5 years. Significant difference existed between the two groups in operation time, blood loss, transfusion volume and cost of hospitalization, while no remarkable difference was identified in hospitalization period, general complications, joint function, pain, rate of revision and mortality. No dislocation was observed in BA group while 3 occurred in THA group. The results indicated that for unstable intertrochanteric fractures in elderly osteoporotic patients, BA seems to be a better or more reasonable choice compared with THA for the reason of less blood loss, shorter operation time, lower cost and no dislocation.  相似文献   

11.
目的:探讨不同入路人工全髋关节置换术(THA)对髋关节疾病患者康复进程、髋关节功能和生活质量的影响。方法:回顾性分析2016年4月~2018年11月期间到我院行THA治疗的髋关节疾病105例患者的临床资料。根据入路方式的不同将其分为A组(n=54,后外侧入路)和B组(n=51,SuperPATH入路),术后行1年的随访,比较两组患者康复进程、髋关节功能和生活质量,记录两组术后并发症发生情况。结果:B组术中失血量、术后引流量少于A组,切口长度、术后第一次下地时间短于A组(均P0.05);B组手术时间长于A组(P0.05)。两组术后1个月、3个月、6个月、12个月髋关节屈曲活动度、髋关节功能Harris评分、髋关节外展活动度均较术前呈先升高后趋于平稳趋势(P0.05);B组术后1个月髋关节屈曲活动度及外展活动度、髋关节功能Harris评分高于A组(P0.05);B组术后3个月、6个月、12个月髋关节屈曲活动度及外展活动度、髋关节功能Harris评分与A组比较无差异(P0.05)。两组末次随访时SF-36各维度评分均较术前升高,且B组高于A组(P0.05)。两组术后并发症发生率比较无差异(P0.05)。结论:与后外侧入路方式相比,髋关节疾病患者THA中采用SuperPATH入路,可促进患者早日康复,有利于患者早期髋关节功能的恢复,对生活质量的改善更为显著,且不增加并发症发生率。  相似文献   

12.
This study quantified how body borne load impacts hip and knee biomechanics during anticipated and unanticipated single-leg cutting maneuvers. Fifteen male military personnel performed a series of single-leg cutting maneuvers with three different load configurations (light, ~6 kg, medium, ~20 kg, and heavy, ~40 kg). Subject-based means of the specific lower limb biomechanical variables were submitted to repeated measures ANOVA to test the main and interaction effects of body borne load and movement type. With body borne load, stance time (P<0.001) increased, while larger hip (P=0.027) and knee flexion (P=0.004), and hip adduction (P<0.001) moments, and decreased hip (P=0.002) and knee flexion (P<0.001), and hip adduction (P=0.003) postures were evident. Further, the hip (P<0.001) and ankle (P=0.024) increased energy absorption, while the knee (P=0.020) increased energy generation with body borne load. During the unanticipated maneuvers, the hip (P=0.009) and knee (P=0.032) increased energy generation, and peak hip flexion moment (P=0.002) increased relative to the anticipated movements. With the body borne load, participants adopted biomechanical patterns that decreased their locomotive ability including larger moments and reduced flexion postures of the lower limb. During the single-leg cut, participants used greater energy absorption from the large, proximal muscles of the hip and greater energy generation from the knee with the addition of load. Participant?s performance when carrying a range of loads was not compromised by anticipation, as they did not exhibit the hip and knee kinetic and kinematic adaptations previously demonstrated when reacting to an unplanned stimulus.  相似文献   

13.
目的:探讨全髋关节置换术(THA)与双极人工股骨头置换术(BHA)治疗老年股骨颈骨折的临床疗效。方法:选择2013 年7 月-2015 年3 月我院收治的老年股骨颈骨折患者90 例,根据手术方法不同将患者分为全髋关节置换组(THA 组)和双极人工股 骨头置换组(BHA 组),每组45 例。观察并比较两组患者的手术时间、术中出血量、住院时间、术后并发症的发生率及手术效果。结 果:两组患者的手术时间、术中出血量及住院时间比较,差异无统计学意义(P>0.05);THA 组并发症的发生率明显低于BHA 组, 差异具有统计学意义(P<0.05);术后1 年,两组手术优良率比较,差异无统计学意义(P>0.05);术后两年及三年,THA 组手术优良 率明显高于BHA 组,差异具有统计学意义(P<0.05)。结论:THA和BHA 治疗老年股骨颈骨折均具有良好的临床疗效,但THA具 有更好的远期疗效,而且术后并发症的发生率较低。  相似文献   

14.
This was an in vitro and in vivo study to develop a novel artificial cervical vertebra and intervertebral complex (ACVC) joint in a goat model to provide a new method for treating degenerative disc disease in the cervical spine. The objectives of this study were to test the safety, validity, and effectiveness of ACVC by goat model and to provide preclinical data for a clinical trial in humans in future. We designed the ACVC based on the radiological and anatomical data on goat and human cervical spines, established an animal model by implanting the ACVC into goat cervical spines in vitro prior to in vivo implantation through the anterior approach, and evaluated clinical, radiological, biomechanical parameters after implantation. The X-ray radiological data revealed similarities between goat and human intervertebral angles at the levels of C2-3, C3-4, and C4-5, and between goat and human lordosis angles at the levels of C3-4 and C4-5. In the in vivo implantation, the goats successfully endured the entire experimental procedure and recovered well after the surgery. The radiological results showed that there was no dislocation of the ACVC and that the ACVC successfully restored the intervertebral disc height after the surgery. The biomechanical data showed that there was no significant difference in range of motion (ROM) or neural zone (NZ) between the control group and the ACVC group in flexion-extension and lateral bending before or after the fatigue test. The ROM and NZ of the ACVC group were greater than those of the control group for rotation. In conclusion, the goat provides an excellent animal model for the biomechanical study of the cervical spine. The ACVC is able to provide instant stability after surgery and to preserve normal motion in the cervical spine.  相似文献   

15.
Scoliosis is a 3D deformation of the spine and rib cage. For severe cases, surgery with spine instrumentation is required to restore a balanced spine curvature. This surgical procedure may represent a neurological risk for the patient, especially during corrective maneuvers. This study aimed to computationally simulate the surgical instrumentation maneuvers on a patient-specific biomechanical model of the spine and spinal cord to assess and predict potential damage to the spinal cord and spinal nerves. A detailed finite element model (FEM) of the spine and spinal cord of a healthy subject was used as reference geometry. The FEM was personalized to the geometry of the patient using a 3D biplanar radiographic reconstruction technique and 3D dual kriging. Step by step surgical instrumentation maneuvers were simulated in order to assess the neurological risk associated to each maneuver. The surgical simulation methodology implemented was divided into two parts. First, a global multi-body simulation was used to extract the 3D displacement of six vertebral landmarks, which were then introduced as boundary conditions into the personalized FEM in order to reproduce the surgical procedure. The results of the FEM simulation for two cases were compared to published values on spinal cord neurological functional threshold. The efficiency of the reported method was checked considering one patient with neurological complications detected during surgery and one control patient. This comparison study showed that the patient-specific hybrid model reproduced successfully the biomechanics of neurological injury during scoliosis correction maneuvers.  相似文献   

16.
This study presents a biomechanical model of orthodontic tooth movement. Although such models have already been presented in the literature, most of them incorporate computationally expensive finite elements (FE) methods to determine the strain distribution in the periodontal ligament (PDL). In contrast, the biomechanical model presented in this work avoids the use of FE methods. The elastic deformation of the PDL is modelled using an analytical approach, which does not require setting up a 3D model of the tooth. The duration of the lag phase is estimated using the calculated hydrostatic stresses, and bone remodelling is predicted by modelling the alveolar bone as a viscous material. To evaluate the model, some typically used motion patterns were simulated and a sensitivity analysis was carried out on the parameters. Results show that despite some shortcomings, the model is able to describe commonly used motion patterns in orthodontic tooth movement, in both single- and multi-rooted teeth.  相似文献   

17.
Component-on-component impingement, followed by levering of the femoral head, is a common mode of dislocation in total hip arthroplasty. While there have been many registry-based studies of dislocation incidence, confounding factors and sources of variability in the clinical domain make it difficult to identify specific parameter influences. A three dimensional nonlinear finite element model has been developed for the purpose of studying the dislocation event, to allow determination of how individual factors such as component design and clinical implantation position affect the propensity for dislocation. Also, a laboratory testing apparatus was constructed to provide physical validation of the computational model. The finite element model correctly predicted the range of motion observed in the physical apparatus to within 1%, and predicted the peak resisting moment to within 2.5%. Under even a light joint load of 200 N, the von Mises stresses developed in the polyethylene insert reached 13 MPa, and the contact stresses rose to as high as 30 MPa. These deleterious elevations occurred not only at the site of neck impingement, but also at the site of head egress from the liner.  相似文献   

18.
We developed a Kalman smoothing algorithm to improve estimates of joint kinematics from measured marker trajectories during motion analysis. Kalman smoothing estimates are based on complete marker trajectories. This is an improvement over other techniques, such as the global optimisation method (GOM), Kalman filtering, and local marker estimation (LME), where the estimate at each time instant is only based on part of the marker trajectories. We applied GOM, Kalman filtering, LME, and Kalman smoothing to marker trajectories from both simulated and experimental gait motion, to estimate the joint kinematics of a ten segment biomechanical model, with 21 degrees of freedom. Three simulated marker trajectories were studied: without errors, with instrumental errors, and with soft tissue artefacts (STA). Two modelling errors were studied: increased thigh length and hip centre dislocation. We calculated estimation errors from the known joint kinematics in the simulation study. Compared with other techniques, Kalman smoothing reduced the estimation errors for the joint positions, by more than 50% for the simulated marker trajectories without errors and with instrumental errors. Compared with GOM, Kalman smoothing reduced the estimation errors for the joint moments by more than 35%. Compared with Kalman filtering and LME, Kalman smoothing reduced the estimation errors for the joint accelerations by at least 50%. Our simulation results show that the use of Kalman smoothing substantially improves the estimates of joint kinematics and kinetics compared with previously proposed techniques (GOM, Kalman filtering, and LME) for both simulated, with and without modelling errors, and experimentally measured gait motion.  相似文献   

19.

Objective

Increasing evidence suggests that smoking may increase the incidence of prosthesis-related complications after total hip arthroplasty (THA). We performed a meta-analysis of cohort studies to quantitatively evaluate the association between smoking and the risk of prosthesis-related complications after THA.

Methods

Relevant articles published before August 15, 2014, were identified by searching the PubMed, EMBASE and Cochrane library databases. Pooled risk ratios (RRs) or weighted mean differences (WMDs) with 95% confidence intervals (CIs) were calculated with either a fixed- or random-effects model.

Results

Six cohort studies, involving a total of 8181 participants, were included in the meta-analysis. Compared with the patients who never smoked, smokers had a significantly increased risk of aseptic loosening of prosthesis (summary RR=3.05, 95% CI: 1.42-6.58), deep infection (summary RR=3.71, 95% CI: 1.86-7.41) and all-cause revisions (summary RR=2.58, 95% CI: 1.27-5.22). However, no significant difference in the risk of implant dislocation (summary RR= 1.27, 95% CI: 0.77-2.10) or length of hospital stay (WMD=0.03, 95% CI: -0.65-0.72) was found between smokers and nonsmokers.

Conclusions

Smoking is associated with a significantly increased risk of aseptic loosening of prosthesis, deep infection and all-cause revisions after THA, but smoking is not correlated with a risk of implant dislocation or the length of hospital stay after surgery.  相似文献   

20.
While differences in joint kinematics and kinetics between control subjects and patients before and after total hip arthroplasty (THA) has often been studied, inter-joint coordination has not been fully characterized. We hypothesized that in patients undergoing THA, inter-joint coordination (i) is different from control subjects before surgery, (ii) changes from pre-operative to post-operative, and (iii) remains different from control subjects after surgery. Seventy-eight subjects underwent gait analysis before and ∼1 year after primary unilateral THA. 109 control subjects were age, sex, and BMI matched to the THA group. We selected a representative trial at each subjects’ self-selected walking speed from a motion analysis data repository. To assess kinematic coordination, we constructed sagittal plane hip-knee angle cyclograms, and calculated total, stance, and swing phase plot area (deg2). To assess kinetic coordination, we calculated the support moment (MS, %wt 1 ht), the time-integral of support moment (MS impulse, %wt 1 ht 1 t), and the relative contribution of each joint to MS impulse (%Hip, %Knee, %Ankle). We used t-tests to compare groups. Total and swing-phase cyclogram area was smaller preoperatively, but improved to control values after THA. Swing-phase area was smaller than control values after THA. MS impulse was larger in THA subjects than controls both before and after surgery. While, the relative contribution of the hip to MS impulse was not different from control values, the contributions of the knee and ankle were smaller. Inter-joint coordination, as measured by hip-knee angle cyclograms and MS impulse, may be used to distinguish differences in gait mechanics between osteoarthritis and THA. Future work focusing on coordination among joints may be needed to fully restore gait function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号