首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   

2.
Summary Mitochondrial -glycerol phosphate dehydrogenase is an important enzyme, but it is difficult to extract and purify. We have measured the activity of this enzyme in single type IIA skeletal muscle fibres under initial rate conditions by microdensitometry of the formazan reaction product.The Km (1.6mm) for the substrate (l--glycerol phosphate) was lower than reported for the extracted enzyme. Further, at low substrate concentrations (3mm), the enzyme was allosterically activated by free Ca2+ concentrations of 1 m or greater, and half-maximal stimulation occurred at 0.3 m free Ca2+. In the absence of Ca2+, there was negative cooperativity of substrate binding with a Hill constant of 0.57, but no cooperativity occurred in the presence of calcium. ATP (10mm) inhibited enzyme activity in the presence of Ca2+ but not in its absence.  相似文献   

3.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

4.
Synaptosomal membranes accumulate 3–6 times more Ca2+ in the presence of ATP (50–1000 M) than basal Ca2+ accumulation (-ATP). The location of this Ca2+ accumulation appears to reside on the cytosolic face of the synaptosome since lysed synaptosomes accumulate 4-times more Ca2+ than intact synaptosomes. The inclusion of mitochondrial inhibitors, oligomycin (0.7 g/ml), sodium azide (100 M) and dinitrophenol (100 M) differentiate mitochondrial from nonmitochondrial Ca2+ accumulation under conditions that are [Ca2+]- and ATP-dependent. In the presence of low concentrations of ATP (<150 M) and Ca free 2+ (2.5 or 6.8 M), Ca2+ accumulation occurs as one process in both lysed synaptosomal membranes and purified synaptic plasma membranes in the presence and/or absence of MI. When ATP levels are increased (>200 M), the Ca2+ accumulation process remains independent of the presence of mitochondrial inhibitors when Ca free 2+ =2.5 M. When Ca free 2+ is increased to 6.8 M, mitochondrial inhibitors differentiate mitochondrial from nonmitochondrial accumulation. These studies suggest that optimal conditions for the measurement of Ca2+ accumulating mechanisms in synaptosomal membranes depend on both [Ca2+] and ATP. Use of these assay conditions provide evidence that ATP-dependent Ca2+ uptake may be a viable mechanism for the regulation of synaptosomal Ca2+ levels.  相似文献   

5.
Summary We studied the effects of lanthanum (La3+) on the release of 3H-norepinephrine(3H-NE), intracellular Ca2+ concentration, and voltage clamped Ca2+ and K+ currents in cultured sympathetic neurons. La3+ (0.1 to 10 m) produced concentration-dependent inhibition of depolarization induced Ca2+ influx and 3H-NE release. La3+ was more potent and more efficacious in blocking 3H-NE release than the Ca2+-channel blockers cadmium and verapamil, which never blocked more than 70% of the release. At 3 m, La3+ produced a complete block of the electrically stimulated rise in intracellular free Ca2+ ([Ca2+] i ) in the cell body and the growth cone. The stimulation-evoked release of 3H-NE was also completely blocked by 3 m La3+. However, 3 m La3+ produced only a partial block of voltage clamped Ca2+ current (I Ca). Following La3+ (10 m) treatment 3H-NE release could be evoked by high K+ stimulation of neurons which were refractory to electrical stimulation. La3+ (1 m) increased the hyperpolarization activated, 4-aminopyridine (4-AP) sensitive, transient K+ current (I A ) with little effect on the late outward current elicited from depolarized holding potentials. We conclude that the effective block of electrically stimulated 3H-NE release is a result of the unique ability of La3+ to activate a stabilizing, outward K+ current at the same concentration that it blocks inward Ca2+ current.  相似文献   

6.
The influence of some ions in pre-growth culture medium on chromate reduction by resting cells of Agrobacterium radiobacter strain EPS-916 was investigated. The reduction was dependent on the Fe2+ content of the culture medium: the higher the iron content, the lower the reduction rate. The cells showed maximum chromate reduction when pre-grown in the presence of 0.243 m Mg2+, 20 m Ca2+ and 3.6 m Mn2+. Chromate reduction was not affected by the addition of MgCl2, CdCl2, ZnCl2, MnCl2, Na2SO4 (1000 m), and Na2MoO4 (100 m) to the activity assays. However, activity was inhibited by the presence of Na2SO4 (10 mm), Na2MoO4 (200 m) and ferric citrate.  相似文献   

7.
Summary The steady N shapeI/V curves were obtained by applying slow ramp hyper- and depolarization pulses toChara cells under the voltage-clamp condition. Application of calcium channel blocker, 20 m La3+, to theChara membrane caused, in about 30 min, a marked reduction of the transient inward current and later almost complete blocking of the pump current, while the steady outward current remained almost unaffected. Removal of external Ca2+ with 0.5mm EGTA caused similar results. Application of calmodulin antagonists, 10 m TFP or 20 m W-7, also gave very similar results, i.e., the decrease of the transient inward current and of H+-pump activity. These results suggest that not only the excitatory mechanisms but also the H+-pump activity ofChara membrane are regulated by calmodulin within a comparatively narrow range of internal Ca2+ level.  相似文献   

8.
Calcium-release channels of sheep cardiac sarcoplasmic reticulum were incorporated into phosphatidylethanolamine bilayers and single channel currents were recorded under voltage-clamp conditions. The effect of adenosine on single channel conductance and gating was investigated, as were the interactions between adenosine and caffeine and adenosine and ,-methylene ATP.Addition of adenosine (0.5–5 mm) to the cytosolic but not the luminal side of the membrane increased the open probability of single calcium-activated calcium-release channels by increasing the frequency and duration of open events, yielding an EC50 of 0.75 mm at 10 m activating Ca2+.Addition of 1 mm caffeine potentiated the effects of adenosine at 10 or 100 m-activating cytosolic calcium, but had no effect on the inability of adenosine to activate the channel at 80 pmcalcium, suggesting discrete sites of action on the calcium-release channel for adenosine and caffeine. In contrast, addition of 100 m ,-methylene-ATP decreased single channel open probability in the presence of adenosine, suggesting that these compounds act on the same site on the channel.Activation of single channel opening by adenosine, or by adenosine together with caffeine, had no effect on single channel conductance or the Ca2+/Tris+ permeability ratio. Channels activated by adenosine were characteristically modified by ryanodine and blocked by m ruthenium red or mm magnesium.These results show that adenosine activates the sheep cardiac sarcoplasmic reticulum Ca2+-release channel by increasing the frequency and duration of open events in a Ca2+-dependent manner. The receptor site on the channel for adenosine is distinct from that for caffeine but probably the same as that for adenine nucleotides.This work was supported by the British Heart Foundation.  相似文献   

9.
Summary Addition of 0.1–0.3 m A23187, a divalent cation ionophore, to human erythrocytes suspended in a 1.0mm 45Ca2+-containing buffer results in a small ( two fold) increase in [Ca2+] i , a significant decrease in osmotic fragility, and a decrease in intracellular K+ (100 mmoles/liter of cells to 70 mmoles/liter cells) without significant alteration of intracellular [Na+]. This decrease in [K+] i is associated with a significant decrease in packed cell volume and correlates directly with the observed alteration is osmotic fragility. Increasing extracellular K+ to 125mm prevents the A23187-induced changes in osmotic fragility, K+ content and cell volume, but does not prevent the ionophore-induced uptake of45Ca2+. Addition of 0.1–0.3 m A23187 to toad erythrocytes leads to an increase in45Ca2+ uptake comparable to that observed in human erythrocytes, but does not alter osmotic fragility, cell volume or K+ content. Higher concentrations of ionophore (3.0–10.0 m) cause a 30- to 50-fold increase in45Ca2+ uptake and concomitant change in K+ content, cell volume and osmotic fragility. These changes in cell properties can be prevented by increasing extracellular [K+] to 90mm. The difference in sensitivity of the two cell types to A23187 is attributed to the presence of additional intracellular calcium pools within toad erythrocytes that prevent an increase in cytoplasmic Ca2+ until Ca2+ uptake is increased substantially at the higher concentrations of A23187.  相似文献   

10.
The calcium pump of human red cells can be irreversibly activated by preincubation of the membranes in the presence of calcium ions, with a pattern reminiscent of that produced by controlled trypsin attack. With 1 mm Ca2+, the activity of the basal enzyme increases three to fourfold over 30 to 60 min, to levels about half those obtained in the presence of calmodulin. On the whole, the effect occurs slowly, with a very low Ca2+ affinity at 37°C and is unaffected by serine-protease inhibitors. The activation caused by 1 mm Ca2+ is little affected by leupeptin (a thiol-protease inhibitor) and that obtained at 10 m Ca2+ is not inhibited. Preincubations at 0°C also lead to activation, to a level up to half that seen at 37°C, and the effect is not affected by leupeptin or antipain. No activation is observed by preincubating soluble purified Ca,Mg-ATPase in Ca2+-containing solutions at 37°C. Instead, calcium ions protect the detergent-solubilized enzyme from thermal inactivation, the effect being half-maximal between 10 and 20 m Ca2+. We conclude that the activation of the membrane-bound Ca,Mg-ATPase by Ca2+ should result from an irreversible conformational change in the enzyme and not from attack by a membrane-bound protease, and that this change presumably arises from the release of inhibitory particles existing in the original membrane preparations.We thank The Wellcome Trust for a research grant, the Medical Research Council for an equipment grant and the Regional Transfusion Service (Sheffield) for bank blood supplies.  相似文献   

11.
The Na/Ca exchanger from lobster muscle crossreacts specifically with antibodies raised against the dog heart Na/Ca exchanger. Immunoblots of the lobster muscle and mammalian heart exchangers, following SDS-PAGE, indicate that the invertebrate and mammalian exchangers have similar molecular weights: about 120 kDa. The exchanger from lobster muscle was partially purified and functionally reconstituted into asolectin vesicles which were loaded with 160 mm NaCl. 45Ca uptake by these proteoliposomes was promoted by replacing 160 mm NaCl in the external medium with 160 mm KCl to produce an outwardly-directed Na+ concentration gradient. When the proteoliposomes were adsorbed onto black lipid membranes (BLM), and DMNitrophen-Ca2+ (caged Ca2+) was added to the KCl medium, photolytically-evoked Ca2+ concentration jumps elicited transient electric currents. These currents corresponded to positive charge exiting from the proteoliposomes, and were consistent with the Na/Ca exchanger-mediated exit of 3 Na+ in exchange for 1 entering Ca2+. The current was dependent upon the Ca2+ concentration jump, the protein integrity, and the outwardly directed Na+ gradient. KCl-loaded proteoliposomes did not produce any current. Low external Na+ concentrations augmented the current, whereas Na+ concentrations >25 mM reduced the current. The dependence of the current on free Ca2+ was Michaelis-Menten-like, with halfmaximal activation (KM(Ca)) at <10 m Ca2+. Caged Sr2+ and Ba2+, but not Mg2+, also supported photolysisevoked outward current, as did Ni2+, but not Mn2+. However, Mg2+ and Mn2+ augmented the Cadependent current, perhaps by facilitating the adsorption of proteoliposomes to the BLM. The Ca-dependent current was irreversibly blocked by La3+ (added as 200 m DMN-La3+). The results indicate that the properties of the Na/Ca exchanger can be studied with these electrophysiological methods.The technical assistance of Verena Heiselpetz in some experiments is gratefully acknowledged. This work was partly supported by the Deutsche Forschungsgemeinschaft (SFB 169) and by National Institutes of Health grants HL30315 and GM39500 to JHK and HL45215 and NS16106 to MPB. MPB was the recipient of a Senior Scientist Award from the Alexander von Humboldt Stiftung.  相似文献   

12.
Summary The effects of local anesthetics on the topology of aminophospholipids and on the release and uptake of dopamine in rat brain synaptosomes have been examined. A metabolically intact preparation of synaptosomes was prepared which maintains aminophospholipid asymmetry and the capacity for sodium-driven uptake and depolarization-dependent release of dopamine. Incubation of synaptosomes with local anesthetics at 37°C induced perturbations in the topology of aminophospholipids as determined by their reactivities to the covalent probe trinitrobenzenesulfonic acid. The reaction of trinitrobenzenesulfonate with phosphatidylethanolamine and phosphatidylserine was inhibited 10–20% by low concentrations of tetracaine (1–100 m) and enhanced by high concentrations (0.3–1.0mm). Other local anesthetics showed a similar biphasic effect with a potency order of dibucaine>tetracaine>lidocaineprocaine. K+-stimulated, Ca2+-dependent release of [3H]dopamine was inhibited significantly at low concentrations of tetracaine (1–10 m) but enhanced at higher concentrations (0.1–1.0mm). Dibucaine and procaine had a similar biphasic effect on the dopamine release. For each of the local anesthetics tested, the inhibition of the reaction of phosphatidylethanolamine and phosphatidylserine with trinitrobenzenesulfonate occurred at concentrations which were shown also to inhibit the release of [3H]dopamine. Local anesthetics were shown to inhibit uptake of [3H]dopamine with a potency order which reflects their potency in producing anesthesia. The inhibition of dopamine uptake by dibucaine, tetracaine, lidocaine, or procaine was characterized by inhibitory constants (K I ) of 1.8±0.4 m, 27±5 m, 190 m and 0.5mm, respectively.Abbreviations TNBS 2,4,6-trinitrobenzene sulfonate - PE phosphatidylethanolamine - PS phosphatidylserine - ESR electron spin resonance - TLC thin-layer chromatography - DA dopamine  相似文献   

13.
Summary We have examined the effects of various inositol polyphosphates, alone and in combination, on the Ca2+-activated K+ current in internally perfused, single mouse lacrimal acinar cells. We used the patch-clamp technique for whole-cell current recording with a set-up allowing exchange of the pipette solution during individual experiments so that control and test periods could be directly compared in individual cells. Inositol 1,4,5-trisphosphate (Ins 1,4,5 P3) (10–100 m) evoked a transient increase in the Ca2+-sensitive K+ current that was independent of the presence of Ca2+ in the external solution. The transient nature of the Ins 1,4,5 P3 effect was not due to rapid metabolic breakdown, as similar responses were obtained in the presence of 5mm 2,3-diphosphoglyceric acid, that blocks the hydrolysis of Ins 1,4,5 P3, as well as with the stable analoguedl-inositol 1,4,5-trisphosphorothioate (Ins 1,4,5 P(S)3) (100 m). Ins 1,3,4 P3 (50 m) had no effect, whereas 50 m Ins 2,4,5 P3 evoked responses similar to those obtained by 10 m Ins 1,4,5 P3. A sustained increase in Ca2+-dependent K+ current was only observed when inositol 1,3,4,5-tetrakisphosphate (Ins 1,3,4,5 P4) (10 m) was added to the Ins 1,4,5 P3 (10 m)-containing solution and this effect could be terminated by removal of external Ca2+. The effect of Ins 1,3,4,5 P4 was specifically dependent on the presence of Ins 1,4,5 P3 as it was not found when 10 m concentrations of Ins 1,3,4 P3 or Ins 2,4,5 P3 were used. Ins 2,4,5 P3 (but not Ins 1,3,4 P3) at the higher concentration of 50 m did, however, support the Ins 1,3,4,5 P4-evoked sustained current activation. Ins 1,3,4 P3 could not evoke sustained responses in combination with Ins 1,4,5 P3 excluding the possibility that the action of Ins 1,3,4,5 P4 could be mediated by its breakdown product Ins 1,3,4 P3. Ins 1,3,4,5 P4 also evoked a sustained response when added to an Ins 1,4,5 P(S)3-containing solution. Ins 1,3,4,5,6 P5 (50 m) did not evoke any effect when administered on top of Ins 1,4,5 P3. In the absence of external Ca2+, addition of Ins 1,3,4,5 P4 to an Ins 1,4,5 P3-containing internal solution evoked a second transient K+ current activation. Readmitting external Ca2+ in the continued presence internally of Ins 1,4,5 P3 and Ins 1,3,4,5 P4 made the response reappear. We conclude that both Ins 1,4,5 P3 and Ins 1,3,4,5 P4 play crucial and specific roles in controlling intracellular Ca2+ homeostasis.  相似文献   

14.
Summary Intact human red blood cells incubated with ionophore A23187 and calcium develop a depletion of ATP that is dependent upon the concentrations of both A23187 and Ca. Incubations of fresh cells with 0.5 m A23187 and concentrations of Ca at or below 70 m produce a depletion of ATP without a net cellular uptake of Ca. In contrast, ATP-depleted cells display an ionophore-dependent cellular uptake of Ca, under identical conditions. A hypothesis is proposed that relates these ionophore-produced ATP depletions to active Ca extrusion by the Ca ATPase.  相似文献   

15.
Triethyl lead is the major metabolite of tetraethyl lead, which is used in industrial processes and as an antiknock additive to gasoline. We tested the hypothesis that low levels of triethyl lead (0.1 nmol/L to 5mol/L) interfere with the normal development of cultured E18 rat hippocampal neurons, possibly through increases in intracellular free calcium ion concentration, [Ca2+]in. The study assessed survival and differentiation using morphometric analysis of individual neurons. We also looked at short-term (up to 3.75-h) changes in intracellular calcium using the calcium-sensitive dye fura-2. Survival of neurons was significantly reduced at 5 mol/L, and overall production of neurites was reduced at 2 mol/L. The length of axons and the number of axons and dendrites were reduced at 1 mol/L. Neurite branching was inhibited at 10 nmol/L for dendrites and 100 nmol/L for axons. Increases in intracellular calcium were observed during a 3.75-h exposure of newly plated neurons to 5 mol/L triethyl lead. These increases were prevented by BAPTA-AM; which clamps [Ca2+]in at about 100 nmol/L. Culturing neurons with BAPTA-AM and 5 mol/L triethyl lead did not reverse the effects of triethyl lead, suggesting that elevation of [Ca2+]in is not responsible for decreases in survival and neurite production. Triethyl lead has been shown to disrupt cytoskeletal elements, particularly neurofilaments, at very low levels, suggesting a possible mechanism for its inhibition of neurite branching at nanomolar concentrations.Abbreviations BAPTA-AM 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid acetoxymethyl ester - [Ca2+]in intracellular free calcium ion concentration - DMSO dimethyl sulfoxide - E18 embryonic day 18 - FBS fetal bovine serum - fura-2AM fura-2 acetoxymethyl ester - HBSS Hanks' Balanced Salt Solution - MEM Eagle's Minimum Essential Medium  相似文献   

16.
Summary In a study of the Ca2+ kinetics of mitochondria of chick epiphyseal chondrocytes, the rate of Ca2+ uptake was linear up to a medium Ca2+ concentration of 30 m. The half maximal transport rate occurred at 34 m Ca2+. The Ca2+ uptake rate, expressed as a function of time, was 35 nmoles/mg protein/min; the presence of Mg2+ had little effect on Ca2+ accumulation. While these kinetic parameters did not differ significantly from mitochondria of cells of nonmineralizing tissues, the respiratory characteristics of the chondrocyte organelles exhibited functional differences. Thus, up to 350 nmoles Ca2+/mg protein, chondrocyte mitochondria performed coupled oxidative phosphorylation. Calcium uptake was energy supported, while Ca2+ binding was low. Addition of respiratory inhibitors and uncouplers to these mitochondria resulted in a rapid loss of more than 80% of the total Ca2+. The Ca/Pi ratio of the extrudate was very similar to the ratio of these ions in cartilage septum fluid. In the most mineralized zones of the epiphyseal plate, there was little change in the state 4 respiratory rate, but nonspecific Ca2+ binding was elevated and a high percentage of the total Ca2+ was in a nonextrudable form. The results indicate that in cells preparing for mineralization, much of the total mitochondrial Ca2+ is in a form that can be transported to the calcification front. In cells close to the calcification front, nonextrudable Ca2+ may form calcium phosphate granules described by other investigators.  相似文献   

17.
Summary We tested the question whether junctional cell-to-cell communication is regulated by the diacylglycerol branch of the phosphoinositide transmembrane signal pathway. Cultured epithelial rat liver cells were treated with the synthetic diacylglycerol 1-oleoyl-2-acetyl glycerol, while their junctional permeability was probed with the microinjected 443-dalton fluorescent tracer Lucifer Yellow. The treatment reduced junctional permeability (without affecting Lucifer permeability of nonjunctional cell membrane). The effect was dose dependent, with a threshold of about 25 g diacylglycerol/ml in sparse cultures and about 50 g/ml in confluent cultures. The reduction of junctional permeability began within 3 min of diacylglycerol application, peaked within 20 min, and reversed spontaneously within 90 min. The phorbol ester TPA mimicked the diacylglycerol effect, but the (spontaneous) reversal was slower. We propose that cell-to-cell communication is under dual physiological control: an upregulatory one, as exerted by the cyclic AMP signal route (Loewenstein, W.R., 1985,Biochem. Soc. Symp. London,50: 43–58), and a downregulatory one, by the diacylglycerol signal route.TMB-8 (54–70 m)—a blocker of intracellular Ca2+ mobilization-impeded the diacylglycerol action on junctional permeability. It prevented the effect of low diacylglycerol doses completely and it markedly reduced the effect of high doses. (It also counteracted the effect of TPA.) Ca2+ thus emerges as a possible candidate for a role in the junctional downregulation by the diacylglycerol signal route. We tentatively advance two models. In one, leaning closely on the Calcium Hypothesis of cell-to-cell channel regulation (Loewenstein, W.R., 1966,Ann. N.Y. Acad. Sci. 137:441–472), Ca2+ mediates the action of the route on the channel. In the other, Ca2+ acts farther removed from the channel, on protein kinase C.Calmidazolium (5–10 m)—an inhibitor of calmodulin-activated proteins—did not prevent the diacylglycerol-induced reduction of junctional permeability. Nor did sodium orthovanadate (25 or 50 m)—an inhibitor of tyrosyl phosphatase-prevent the reversal of diacylglycerol-induced (or TPA-induced) reduction of junctional permeability.  相似文献   

18.
In our previous study vesamicol, an inhibitor of the acetylcholine transporter of the cholinergic vesicles, inhibited veratridine-evoked external Ca2+-dependent acetylcholine release from striatal slices but did not influence acetylcholine release observed in Ca2+-free medium (4). Here we examined if the effect of veratridine on membrane potential, Ca2+ uptake, and intracellular Ca2+ concentration of synaptosomes was altered by vesamicol in parallel with the inhibition of acetylcholine release. The depolarizing effect of 10 M veratridine (from 67±2.3 mV resting membrane potential to 50.7±2.5 mV) was not significantly influenced by vesamicol (1–20 M). Vesamicol (1–20 M) had no effect on either the overall curve of the veratridine-evoked45Ca2+ uptake or the amount of Ca2+ taken up by synaptosomes. Veratridine caused a rise in intrasynaptosomal Ca2+ concentration as measured by Fura2 fluorescence, and the same increase both in characteristics and in magnitude was observed in the presence of vesamicol (20 M). The K+-evoked (40 mM) increase of Ca2+ uptake and of intracellular calcium concentration were also unaltered by vesamicol. In high concentration (50 M) vesamicol inhibited both the fall in membrane potential and the elevated Ca2+ uptake by veratridine, indicating a possible nonspecific effect on potential-dependent Na+ channels at this concentration. Vesamicol, in lower concentration (20 M) when neither of the above parameters was changed, completely prevented veratridine-evoked increase of [14C]acetylcholine release. This was observed only when vesamicol was present in the media throughout the experiment after loading the preparation with [14C]choline. The results suggest that vesamicol does not interfere with veratridine-induced changes in isolated nerve terminals other than with the release of acetylcholine, thus further supporting the involvement of a vesamicol-sensitive vesicular transmitter pool in Ca2+-dependent veratridine-elicited acetylcholine release.  相似文献   

19.
A toxic factor released from disrupted cells of Vibrio parahaemolyticus was partially purified by gel filtration after precipitation with (NH4)2SO4 at 40% saturation. The factor, which was a thermostable protein of 63 kDa, lysed human erythrocytes at a concentration of 0.15 g ml-1. Its LD50 by intravenous injection into mice was 6.4 g. Fluid accumulated in suckling mice force-fed with the toxic material (1 to 25 g). Haemolytic activity, which occurred maximall at 37°C and pH 7.0 was enhanced by Ca2+, Cu2+ and Zn2+, each at 1 mm. Anti-toxic-factor serum agglutinated V. parahaemolyticus cells. The factor may play a role in the pathogenesis of V. parahaemolyticus infections and in the host's defence mechanisms against infection by the microorganism.  相似文献   

20.
Effects of dopamine on the membrane permeability transition, thioredoxin reductase activity, production of free radicals and oxidation of sulfhydryl groups in brain mitochondria and the Ca2+ uptake by Na+-Ca2+ exchange and sulfhydryl oxidation in brain synaptosomes were examined. The brain mitochondrial swelling and the fall of transmembrane potential were altered by pretreatment of dopamine in a dose dependent manner. Depressive effect of dopamine on mitochondrial swelling was reversed by 10 g/ml catalase, and 10 mM DMSO. The activities of thioredoxin reductase in intact or disrupted mitochondria were decreased by dopamine (1-100 M), 25 M Zn2+ and 50 M Mn2+. Dopamine-inhibited enzyme activity was reversed by 10 g/ml SOD and 10 g/ml catalase. Pretreatment of dopamine decreased Ca2+ transport in synaptosomes, which was restored by 10 g/ml SOD and 10 mM DMSO. Dopamine (1-100 M) in the medium containing mitochondria produced superoxide anion and hydrogen peroxide, while its effect on nitrite production was very weak. The oxidation of sulfhydryl groups in mitochondria and synaptosomes were enhanced by dopamine with increasing incubation times. Results suggest that dopamine could modulate membrane permeability in mitochondria and calcium transport at nerve terminals, which may be ascribed to the action of free radicals and the loss of reduced sulfhydryl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号