首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here we summarize results of the EU funded research project STAR concerning the suitability of different organism groups (fish, benthic invertebrates, macrophytes, diatoms) for monitoring European rivers. In a general way, the suitability of the organism groups is classified by monitoring type, stress type, river type, temporal scale and taxonomic resolution. For example, although all organism groups are affected by acidification, the relatively low species richness of fish and macrophytes in small mountain streams makes these two groups less suitable, and, hence, we argue that benthic diatoms and/or invertebrates may be considered as more robust indicators. Similar, lines of reasoning are given for a number of stressor and stream types.  相似文献   

2.
3.
Data on phytoplankton, macrophytes, benthic invertebrates and fish from more than 2000 lakes in 22 European countries were used to develop and test metrics for assessing the ecological status of European lakes as required by the Water Framework Directive. The strongest and most sensitive of the 11 metrics responding to eutrophication pressure were phytoplankton chlorophyll a, a taxonomic composition trophic index and a functional traits index, the macrophyte intercalibration taxonomic composition metric and a Nordic lake fish index. Intermediate response was found for a cyanobacterial bloom intensity index (Cyano), the Ellenberg macrophyte index and a multimetric index for benthic invertebrates. The latter also responded to hydromorphological pressure. The metrics provide information on primary and secondary impacts of eutrophication in the pelagic and the littoral zone of lakes. Several of these metrics were used as common metrics in the intercalibration of national assessment systems or have been incorporated directly into the national systems. New biological metrics have been developed to assess hydromorphological pressures, based on aquatic macrophyte responses to water level fluctuations, and on macroinvertebrate responses to morphological modifications of lake shorelines. These metrics thus enable the quantification of biological impacts of hydromorphological pressures in lakes.  相似文献   

4.
The curvilinear relationship between species richness and habitat area (species–area relationship (SAR)) is a fundamental ecological pattern. The relationship is often viewed from a long‐term perspective across relatively large spatial scales, reflecting a balance between immigration and extinction dynamics. We explored whether predictions of SAR also manifest over short time periods (days) in benthic habitat patches of a dynamic floodplain river where littoral faunal assemblages are continuously assembled and disassembled with changing water levels. We examined the relationship of patch size with faunal abundance (i.e. fish and aquatic invertebrates), taxonomic richness, trophic group richness and overall assemblage composition. Strong taxa–area relationships emerged despite the relatively short experimental time period (21 days); larger patches had more taxa and trophic groups. For the smallest patches, taxonomic richness was especially sensitive to abundance of individuals; abundance of individuals was a less important predictor of taxonomic and trophic group richness for the largest patches. Despite the relatively short time frame for study within this temporally dynamic ecosystem, our findings indicate a strong SAR for fishes and macroinvertebrates inhabiting patchy habitats in the littoral zone of this tropical river.  相似文献   

5.
In a clear and a turbid freshwater lake the biomasses of phytoplankton, periphytic algae and periphytonassociated macrograzers were followed in enclosures with and without fish (Rutilus rutilus) and four light levels (100%, 55%, 7% and < 1% of incoming light), respectively. Fish and light affected the biomass of primary producers and the benthic grazers in both lakes. The biomass of primary producers was generally higher in the turbid than the clear lake, and in both lakes fish positively affected the biomass, while shading reduced it. Total biomass of benthic grazing invertebrates was higher in the clear than in the turbid lake and the lakes were dominated by snails and chironomids + ostracods, respectively. While light had no effect on the biomass of grazers in the clear lake, snail breeding was delayed in the most shaded enclosures and presence of fish reduced the number of snails and the total biomass of grazers. In the turbid lake ostracod abundance was not influenced by light, but was higher in fish-free enclosures. Density of chironomids correlated positively with periphyton biomass in summer, while fish had no effect. Generally, light-mediated regulation of primary producers was stronger in the turbid than in the clear lake, but the regulation did not nambiguously influence the primary consumers. However, regulation by fish of the benthic grazer community was stronger in the clear than in the turbid lake, and in both lakes strong top-down effects on periphyton were seen. The results indicate that if present-day climate in Denmark in the future is found in coastal areas at higher latitudes, the effect of lower light during winter in such areas will be highest in clear lakes, with typically lower fish biomass and higher invertebrate grazer density.  相似文献   

6.
Biomass and species diversity (richness and evenness) of littoral organisms were explored in 27 sites in three basins of the large Lake Saimaa system in eastern Finland. The basins differed in degree of nutrient loading and trophic status. Six organismal groups, i.e., phytoplankton, periphyton, macrophytes, crustacean zooplankton, benthic macroinvertebrates and fish were studied. Factors affecting the biomass and diversity of these groups were explored by multiple stepwise regression analysis. The biomass of different groups was explained by the same variables, mainly nutrients, while diversity was associated with different environmental factors among the studied groups. The biomass of periphyton, phytoplankton, zooplankton, and fish correlated significantly with each other. There was also an apparent association between the biomass of macrophytes and that of benthic invertebrates. However, no significant correlations were found among the diversity of the studied groups. In accordance with previous studies, our results did not support the existence of species-rich hotspots or the possibility of using any surrogate taxon to reveal overall biodiversity. Thus, for conservation planning, biological surveys should include extensive collection of taxonomic groups and organisms at all trophic levels.  相似文献   

7.
Introduced fish reduce the abundance and diversity of native aquatic fauna, but the effect can be reduced in complex habitats. We manipulated fish populations in forested mountain lakes to determine whether or not fish affected benthic macroinvertebrate composition across lakes with differing habitat complexity. We compared abundance, biomass, body-length, and community structure of benthic macroinvertebrates from 16 lakes with three treatments (fish stocked, suspended stocking, fish removed) and unstocked fishless “controls”. Over 4 years, we assessed the relative importance of fish and environmental variables influencing the composition of benthic macroinvertebrates. Control lakes had the greatest overall abundance of macroinvertebrates when chironomid midges were excluded. Abundances of insects in the clinger/swimmer functional group and caddisflies were greatest in the control lakes but were primarily influenced by habitat variables including the availability of aquatic vegetation and wood. Total biomass and mean body length of macroinvertebrates were not affected by treatment. Taxon richness of macroinvertebrates was about 40% greater in the control lakes compared to the treatment lakes but did not differ among treatments. Our results suggest that fish reduce susceptible macroinvertebrate richness and abundances, but that changes associated with alterations of fish composition are confounded by other factors in complex lake habitats.  相似文献   

8.
Benthic invertebrates from River Nyamweru, a tropical forest stream in western Uganda were sampled bimonthly between April and December 1997 using a modified Hess Sampler. A total of 3708 benthic fauna from thirteen taxonomic orders were collected. Benthic samples were dominated by Diptera (mainly Chironomidae) representing over 60% of all the organisms, followed by Ephemeroptera. Benthic invertebrate densities ranged from 63 ± 9.03 organisms/m2 to 300 ± 33.36 organisms/m2, with higher densities occurring during the dry season and lower densities during the wet season. The benthic community structure in River Nyamweru reflected mainly collectors and scrapers as the most important groups (83%), while predators were very rare (3.1%). River discharge influenced benthic abundance, with more invertebrates at lower discharge and fewer invertebrates at higher discharge. The applicability of the River Continuum Concept to tropical forest stream situation is discussed.  相似文献   

9.
In saline lakes, areal cover and both species and structural diversity of macrophytes often decline as salinity increases. To assess effects of the loss of certain macrophyte growth forms, we characterized benthic and epiphytic invertebrates in three growth forms (thin-stemmed emergents, erect aquatics, and low macroalgae) in oligosaline lakes (0.8–4.2 mS cm−1) of the Wyoming High Plains, USA. We also measured the biomass and taxonomic composition of epiphytic and benthic invertebrates in two erect aquatics with very similar structure that are found in both oligosaline (Potamogeton pectinatus) and mesosaline (9.3–23.5 mS cm−1) (Ruppia maritima) lakes. Although total biomass of epiphytic invertebrates varied among oligosaline lakes, the relative distribution of biomass among growth forms was similar. For epiphytic invertebrates, biomass per unit area of lake was lowest in emergents and equivalent in erect aquatics and low macroalgae; biomass per unit volume of macrophyte habitat was greatest in low macroalgae. For benthic invertebrates, biomass was less beneath low macroalgae than other growth forms. Taxonomic composition did not differ appreciably between growth forms for either benthic or epiphytic invertebrates, except that epiphytic gastropods were more abundant in erect aquatics. Total biomass of epiphytic and benthic invertebrates for the same growth form (erect aquatic) did not differ between oligosaline (Potamogeton pectinatus) and mesosaline (Ruppia maritima) lakes, but taxonomic composition did change. In the oligosaline to mesosaline range, direct toxic effects of salinity appeared important for some major taxa such as gastropods and amphipods. However, indirect effects of salinity, such as loss of macrophyte cover and typically higher nutrient levels at greater salinities, probably have larger impacts on total invertebrate biomass lake-wide.  相似文献   

10.
Acid rain and its effects on sediments in lakes and streams   总被引:1,自引:1,他引:0  
Likens  Gene E. 《Hydrobiologia》1989,176(1):331-348
Wet and dry deposition of acidic substances, which are emitted to the atmosphere by human activities, have been falling on increasingly widespread areas throughout the world in recent decades. As a result, annual precipitation averages less than pH 4.5 over large areas of the Northern Temperate Zone, and not infrequently, individual rainstorms and cloud or fog-water events have pH values less than 3. Concurrently, thousands of lakes and streams in North America and Europe have become so acidified that they no longer support viable populations of fish and other organisms.Acid deposition may affect sediments in lakes and streams in a variety of ways. In particular, the sediment-water exchange of metals, sulfur, nitrogen and phosphorus, microbial processes, growth of periphyton and macrophytes, and benthic invertebrates may be affected.Overall, the effects of acid deposition on lake and stream ecosystems are the result of numerous and complex biogeochemical interactions, including catchment characteristics, flow path and residence time of water, and lake-basin morphometry and acid neutralization capacity of both aquatic and terrestrial (catchment) ecosystems.Suggestions for future research are given.  相似文献   

11.
We studied the succession patterns of the benthic community following a whole-lake restoration experiment in a subtropical hypertrophic lake (Lake Rodó, 34°55′ S 56°10′ W, Montevideo, Uruguay). The restoration measures involved diversion of the main inlet and removal of upper 1-m sediment and biomanipulation of the fish community. Between January 1997 and November 1999, we sampled sediments seasonally to analyse changes in benthos in relation to other abiotic and biotic characteristics of the system. The benthic community of the lake was composed of three families and nine genera. The maximum density (646 ind m−2), as well as the maximum taxonomic richness (six), were observed 1 month after the lake was refilled. Since 1998, the benthic abundance decreased considerably and continuously and a total absence of benthic organisms was registered by the end of the year. The low abundance of macroinvertebrates during 1997 could be explained by the food preferences of the dominant fish species, and the high fish biomass at the beginning of the biomanipulation process. However, the most relevant physico-chemical temporal patterns were the increase of organic matter and nutrients in the sediment and the fluctuations of oxygen and nitrate in the deepest layer of the water column. The disappearance of benthos was related to these temporal changes. These results stress the importance of the increase of organic matter for the changes in the physico-chemical environment, and its importance in the benthic succession and possible collapse. We suggest that in hypertrophic lakes, the effects of organic matter enrichment in the sediment can be even more relevant than fish predation in shaping the zoobenthos.  相似文献   

12.
1. Brown and rainbow trout have been introduced to many inland waters in New Zealand, but research on the impacts on native communities has focused mainly on streams. The purpose of this study was to compare the benthic communities of trout and troutless lakes. Based on previous studies in North America and Europe, we predicted that the benthic biomass, and especially the abundance of large invertebrates, would be lower in lakes with trout as compared to those without. We surveyed the invertebrate fauna of 43 shallow, high‐elevation lakes (26 with and 17 without trout) in four geographic clusters on the central South Island and then conducted a detailed quantitative study of invertebrate biomass and community structure in 12 of these lakes. 2. Benthic community composition and diversity of lakes with and without trout were nearly identical and biomass was as high or higher in the lakes with as without trout. There was no evidence that trout have caused local extinctions of benthic invertebrates. Although the proportional abundance of large‐bodied aquatic was slightly lower in lakes with than without trout, the abundance of several groups of large‐bodied benthic taxa (dragonflies, caddisflies and water bugs) did not differ. 3. Our findings are in contrast to those in North American and Europe where trout introductions into previously troutless lakes have led to declines in the abundance of benthic invertebrates, especially large‐bodied taxa. We propose that the modest effects of trout in New Zealand could be explained by (i) the high areal extent of submergent vegetation that acts as a benthic refuge, (ii) low intensity of trout predation on benthic communities and/or (iii) characteristics of the benthic invertebrates that make them relatively invulnerable to fish predation. 4. Regardless of the relative importance of these hypotheses, our results emphasise that the same invertebrates occurred in all of the lakes, regardless of size, elevation and presence of trout, suggesting habitat generalists dominate the benthic fauna in shallow New Zealand lakes.  相似文献   

13.
Presence of fish affects lake use and breeding success in ducks   总被引:1,自引:0,他引:1  
Several previous studies indicate that presence of fish has negative effects on waterbirds breeding on lakes, owing either to competition for common invertebrate prey or fish predation on ducklings/chicks. However, others have reported results to the contrary and it remains unresolved what factors trigger, inhibit, and modulate fish–waterbird interactions. The present study was designed to test the effect of fish presence per se, with a minimum of variation in possibly confounding environmental variables. Thus, after stratifying for area, depth, altitude, pH, and total phosphorus we compared 13 lakes with and 12 without fish (mainly pike Esox lucius and perch Perca fluviatilis) with respect to (i) general species richness of waterbirds, (ii) species-specific utilization and breeding success of two dabbling ducks (mallard Anas platyrhynchos and teal Anas crecca) and a diving duck (goldeneye Bucephala clangula). General species richness of waterbirds was higher on fishless lakes. Overall use (bird days) and brood number of teal and goldeneye were higher on fishless lakes. The latter also had more benthic and free-swimming prey invertebrates compared to lakes with fish. Mallard use, mallard brood number, and abundance of emerging insects did not differ between lake groups. Generalized linear models including fish presence as factor and considering seven environmental variables as covariates, confirmed that all waterbird variables except mallard days and broods were negatively correlated to fish presence. There was also a residual positive relationship of lake area on general species richness, teal days, and teal broods. Our data demonstrate a stronger effect of fish presence on diving ducks and small surface feeding ducks than on large surface-feeding ducks. We argue that observed patterns were caused by fish predation on ducks rather than by fish–duck competition for common prey.  相似文献   

14.
Spatial distribution of young-of-the-year (YOY) and older roach, rudd, perch and ruffe was compared in two artificial lakes with macrophytes present and absent, and a valley reservoir, using gillnets. Almost all species of interest and both age categories preferred benthic habitats. The depth distribution in benthic habitats was relatively consistent across water bodies with the highest fish densities found in the shallowest depths. In the macrophyte-rich lake, YOY roach and perch utilize the 3–6 m benthic layer the most, whereas the fish preferred the 0–3 m benthic layer in the macrophyte-poor lake and reservoir. No differences were found in the depth distribution in pelagic habitats sampled by pelagic gillnets for YOY fish between the water bodies. Older fish usually utilized the surface water layer. Macrophytes influenced the depth distribution of YOY fish in benthic habitats, where their density maximum shifted deeper in the macrophyte-rich lake when fewer macrophytes were present in the shallowest benthic depth. In lakes, YOY fish utilized a wider depth spectrum due to the deeper thermocline when compared to the reservoir. Oxygen and temperature stratification are the main factors influencing fish distribution, whereas macrophyte presence particularly influences the depth distribution of YOY fish in benthic habitats.  相似文献   

15.
Monitoring temporal changes in the biology of acid waters   总被引:1,自引:0,他引:1  
1. Assemblages of epilithic diatoms, macrophytes, benthic macroinvertebrates and fish were monitored over a 5-year period (1988–92) in ten lakes and nine streams in the U.K., as part of the U.K. Acid Waters Monitoring Network. All organisms were categorized according to their functional or morphological characteristics and integrated to describe the food web at each site. In general, the flora and fauna of all sites were typical of oligotrophic, softwater systems subject to various degrees of acidification. 2. Salmonids were the only fish caught at any site and brown trout were the dominant species. With only 5 years of data it was not possible to test for directional changes in fish populations at each site. Among sites, fish density was positively associated with pH, and this did not vary between lake outflows and streams or between fish of different age class (0 +, 1 +). Condition factor, reflecting fish health, was not associated with pH among sites, but was negatively associated with fish density and, on average, was higher for fish in streams than those in lake outflows. 3. Variability in the diatom, macrophyte and invertebrate data sets were quantified in three ways using multivariate techniques: species turnover or replacement (temporal variation due to directional change), persistence (the reciprocal of between-year variability) and within-year variability (heterogeneity between sample replicates). For all groups, turnover was relatively low and persistence was high. The least persistent macrophyte assemblages occurred in stream sites and this may reflect high inter-annual variation in the cover of filamentous algae which are prone to scouring. Within-year variability was higher than turnover or between-year variability for the diatoms and invertebrates, and highest values were recorded for lake invertebrates. 4. Redundancy analysis, RDA, was used to test the diatom, macrophyte, invertebrate and food web data for evidence of directional changes over time and its significance was assessed using Monte Carlo permutation tests. These tests appeared robust to temporal and spatial variability in the data set. Significant trends could be identified in some data sets despite considerable between-replicate and non-linear between-year variability. 5. Significant linear trends in at least one biological group were found at eight lake and seven stream sites. Only one lake and one stream had significant trends in all four groups. These trends represent changes in the flora and/or fauna, but they can be interpreted in several different ways. Only six sites showed trends that were consistent with our knowledge of species’ responses to water chemistry: three indicated increased acidity and three indicated decreased acidity. At only one site were the biological results consistent with observed chemical changes and there was disagreement at the other five. Of the other nine sites that showed biological changes, two appeared to reflect known physical habitat disturbances; the other seven remain unexplained.  相似文献   

16.
Dictated by limited resource availability for land acquisition, a central question in conservation biology is the ability of areas of different size to maintain species diversity. The selected reserves should not only be species rich at the moment, but should also maintain species diversity in the long run. We used two sets of data on vascular plant species in boreal lakes collected in 1933/34 and 1996 to test the relationships between lake area and the extinction, immigration and turnover rates of the species. Moreover, we investigated, whether the number of species in 1933/34 or water connection between lakes was related to extinction, immigration and turnover rates of species. We found that lake area or shoreline length was not correlated with immigration or turnover rate. But extinction rate was slightly negatively correlated with shoreline length. The original number of species was positively related to the number of species extinctions and to the absolute turnover rate in the lakes, which indicates that species richness does not create stability in these communities. Species number was not correlated with immigration rate. Upstream water connections in the lakes did not affect immigration, extinction or turnover rates. We conclude that length of the shoreline is a better measure of suitable area for water plants than the lake area, and that because the correlation between shoreline length and extinction rate was slight, also small lakes can be valuable for conservation.  相似文献   

17.
Change in the abundance of benthic macroinvertebrates and the stable isotope composition (C, N) of benthic invertebrates and zooplankton in Lake Vaeng, Denmark, was investigated over an 18-year period following biomanipulation (removal of cyprinids). During the first nine years after biomanipulation, the lake was clear and submerged macrophytes were abundant; after this period, a shift occurred to low plant abundance and high turbidity. Two years after the biomanipulation, total density of benthic macroinvertebrates reached a maximum of 17042 (±2335 SE) individuals m−2 and the density was overall higher when the lake was in a clear state. Redundancy analysis (RDA) suggested macrophyte abundance and total nitrogen (TN) concentration were the dominant structuring forces on the benthic macroinvertebrate assemblage. Stable isotope analysis revealed that δ13C of macroinvertebrates and zooplankton was markedly higher in years with high submerged macrophyte abundance than in years without macrophytes, most likely reflecting elevated δ13C of phytoplankton and periphyton mediated by a macrophyte-induced lowering of lake water CO2 concentrations. We conclude that the strong relationship between macrophyte coverage and δ13C of macroinvertebrates and cladocerans may be useful in paleoecological studies of past changes in the dynamics of shallow lakes, as change in macrophyte abundance may be tracked by the δ13C of invertebrate remains in the sediment.  相似文献   

18.
Diel horizontal migration (DHM), where zooplankton moves towards macrophytes during daytime to avoid planktivorous fish, has been reported as a common migration pattern of zooplankton in shallow temperate freshwater lakes. However, in shallow eutrophic brackish lakes, macrophytes seem not to have the same refuge effect, as these lakes may remain turbid even at relatively high macrophyte abundances. To investigate the extent to which macrophytes serve as a refuge for zooplankton at different salinities, we introduced artificial plants mimicking submerged macrophytes in the littoral zone of four shallow lakes, with salinities ranging from almost freshwater (0.3) to oligohaline waters (3.8). Furthermore, we examined the effects of different salinities on the community structure. Diel samples of zooplankton were taken from artificial plants, from areas where macrophytes had been removed (intermediate areas) and, in two of the lakes, also in open water. Fish and macroinvertebrates were sampled amongst the artificial plants and in intermediate areas to investigate their influence on zooplankton migration. Our results indicated that diel vertical migration (DVM) was the most frequent migration pattern of zooplankton groups, suggesting that submerged macrophytes were a poor refuge against predation at all salinities under study. Presumably, this pattern was the result of the relatively high densities of small planktivorous fish and macroinvertebrate predators within the submerged plants. In addition, we found major differences in the composition of zooplankton, fish and macroinvertebrate communities at the different salinities and species richness and diversity of zooplankton decreased with increasing salinity. At low salinities both planktonic/free-swimming and benthic/plant-associated cladocerans occurred, whilst only benthic ones occurred at the highest salinity. The low zooplankton biomass and overall smaller-bodied zooplankton specimens may result in a lower grazing capacity on phytoplankton, and enhance the turbid state in nutrient rich shallow brackish lakes.  相似文献   

19.
1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish‐containing lakes (n = 18) of similar size, location and maximum depth. We used non‐metric multidimensional scaling to assess differences in community structure and t‐tests for taxon‐specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish‐containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish‐containing lakes, especially taxa that are large, active and free‐swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus liberus, Hesperocorixa spp., Dineutus spp., Chaoborus americanus, Notonecta insulata and Callicorixa spp. These taxa are collected most effectively with submerged light traps. 7. Naturally fishless lakes warrant conservation, because they provide habitat for a unique suite of organisms that thrive in the absence of fish predation.  相似文献   

20.
Lake Temiskaming, a rift valley lake on the Ontario-Quebec border, exhibits a permanent gradient of turbidity due to tributary streams which cut through clay deposits to the north of the lake. Concentrations of total phosphorus (TP) also decreased from north to south, with values suggesting mesotrophic conditions. Concentrations of chlorophyll a were characteristic of oligotrophic lakes and showed little relationship to either turbidity or TP. Large numbers of Tubificidae were found at our northernmost sampling station at a depth of 50 m, probably reflecting the localized impact of allochthonous organic matter introduced by a tributary stream. Numerical abundance of the benthic fauna was much lower and did not vary significantly among the six more southerly 50 m stations, but biomass declined from north to south as Heterotrissocladius oliveri relaced Pontoporeia hoyi. Numerical abundance did not differ significantly among stations at depths of 10 m, but biomass decreased from north to south reflecting the distributions of the largest species, Hexagenia sp. and P. hoyi. Intensive sampling on two transects showed that maximum numbers of invertebrates occurred in the profundal zone. While these results are consistent with the correlation between TP and zoobenthic biomass reported by other investigators, size selective predation by fish may also be important in controlling the distribution of benthic invertebrates in Lake Temiskaming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号