共查询到20条相似文献,搜索用时 15 毫秒
1.
A shortened form of the self-splicing rRNA intervening sequence (IVS) of Tetrahymena thermophila can catalyze a transesterification reaction, termed G-exchange, between a monomeric guanosine derivative such as GTP and the substrate GpN (where N is A, C, G or U). The reaction is specific to the two guanosines involved, providing evidence that two guanosine binding sites exist in this group I IVS RNA. One binding site accommodates a guanosine which initiates self-splicing and the other recognizes the guanosine preceding the 3' splice site. Previously, only one guanosine binding site was thought to be involved in the mechanism of self-splicing. Based on the two functionally distinguishable guanosine binding sites, a new model is proposed to explain how the two independent transesterification reactions required for self-splicing might proceed in a concerted manner. 相似文献
2.
Aparna Roy Bruck Taddese Shabana Vohra Phani K. Thimmaraju Christopher J.R. Illingworth Lisa M. Simpson 《Journal of biomolecular structure & dynamics》2013,31(3):364-371
Multiple sequence alignment (MSA) accuracy is important, but there is no widely accepted method of judging the accuracy that different alignment algorithms give. We present a simple approach to detecting two types of error, namely block shifts and the misplacement of residues within a gap. Given a MSA, subsets of very similar sequences are generated through the use of a redundancy filter, typically using a 70–90% sequence identity cut-off. Subsets thus produced are typically small and degenerate, and errors can be easily detected even by manual examination. The errors, albeit minor, are inevitably associated with gaps in the alignment, and so the procedure is particularly relevant to homology modelling of protein loop regions. The usefulness of the approach is illustrated in the context of the universal but little known [K/R]KLH motif that occurs in intracellular loop 1 of G protein coupled receptors (GPCR); other issues relevant to GPCR modelling are also discussed. 相似文献
3.
One RNA plays three roles to provide catalytic activity to a group I intron lacking an endogenous internal guide sequence
下载免费PDF全文

Catalytic RNA molecules possess simultaneously a genotype and a phenotype. However, a single RNA genotype has the potential to adopt two or perhaps more distinct phenotypes as a result of differential folding and/or catalytic activity. Such multifunctionality would be particularly significant if the phenotypes were functionally inter-related in a common biochemical pathway. Here, this phenomenon is demonstrated by the ability of the Azoarcus group I ribozyme to function when its canonical internal guide sequence (GUG) has been removed from the 5′ end of the molecule, and added back exogenously in trans. The presence of GUG triplets in non-covalent fragments of the ribozyme allow trans-splicing to occur in both a reverse splicing assay and a covalent self-assembly assay in which the internal guide sequence (IGS)-less ribozyme can put itself together from two of its component pieces. Analysis of these reactions indicates that a single RNA fragment can perform up to three distinct roles in a reaction: behaving as a portion of a catalyst, behaving as a substrate, and providing an exogenous IGS. This property of RNA to be multifunctional in a single reaction pathway bolsters the probability that a system of self-replicating molecules could have existed in an RNA world during the origins of life on the Earth. 相似文献
4.
Evaluation measures of multiple sequence alignments. 总被引:1,自引:0,他引:1
Multiple sequence alignments (MSAs) are frequently used in the study of families of protein sequences or DNA/RNA sequences. They are a fundamental tool for the understanding of the structure, functionality and, ultimately, the evolution of proteins. A new algorithm, the Circular Sum (CS) method, is presented for formally evaluating the quality of an MSA. It is based on the use of a solution to the Traveling Salesman Problem, which identifies a circular tour through an evolutionary tree connecting the sequences in a protein family. With this approach, the calculation of an evolutionary tree and the errors that it would introduce can be avoided altogether. The algorithm gives an upper bound, the best score that can possibly be achieved by any MSA for a given set of protein sequences. Alternatively, if presented with a specific MSA, the algorithm provides a formal score for the MSA, which serves as an absolute measure of the quality of the MSA. The CS measure yields a direct connection between an MSA and the associated evolutionary tree. The measure can be used as a tool for evaluating different methods for producing MSAs. A brief example of the last application is provided. Because it weights all evolutionary events on a tree identically, but does not require the reconstruction of a tree, the CS algorithm has advantages over the frequently used sum-of-pairs measures for scoring MSAs, which weight some evolutionary events more strongly than others. Compared to other weighted sum-of-pairs measures, it has the advantage that no evolutionary tree must be constructed, because we can find a circular tour without knowing the tree. 相似文献
5.
Multiple sequence alignment is a fundamental tool in a number of different domains in modern molecular biology, including functional and evolutionary studies of a protein family. Multiple alignments also play an essential role in the new integrated systems for genome annotation and analysis. Thus, the development of new multiple alignment scores and statistics is essential, in the spirit of the work dedicated to the evaluation of pairwise sequence alignments for database searching techniques. We present here norMD, a new objective scoring function for multiple sequence alignments. NorMD combines the advantages of the column-scoring techniques with the sensitivity of methods incorporating residue similarity scores. In addition, norMD incorporates ab initio sequence information, such as the number, length and similarity of the sequences to be aligned. The sensitivity and reliability of the norMD objective function is demonstrated using structural alignments in the SCOP and BAliBASE databases. The norMD scores are then applied to the multiple alignments of the complete sequences (MACS) detected by BlastP with E-value<10, for a set of 734 hypothetical proteins encoded by the Vibrio cholerae genome. Unrelated or badly aligned sequences were automatically removed from the MACS, leaving a high-quality multiple alignment which could be reliably exploited in a subsequent functional and/or structural annotation process. After removal of unreliable sequences, 176 (24 %) of the alignments contained at least one sequence with a functional annotation. 103 of these new matches were supported by significant hits to the Interpro domain and motif database. 相似文献
6.
MOTIVATION: The program ESPript (Easy Sequencing in PostScript) allows the rapid visualization, via PostScript output, of sequences aligned with popular programs such as CLUSTAL-W or GCG PILEUP. It can read secondary structure files (such as that created by the program DSSP) to produce a synthesis of both sequence and structural information. RESULTS: ESPript can be run via a command file or a friendly html-based user interface. The program calculates an homology score by columns of residues and can sort this calculation by groups of sequences. It offers a palette of markers to highlight important regions in the alignment. ESPript can also paste information on residue conservation into coordinate files, for subsequent visualization with a graphics program. AVAILABILITY: ESPript can be accessed on its Web site at http://www.ipbs.fr/ESPript. Sources and helpfiles can be downloaded via anonymous ftp from ftp.ipbs.fr. A tar file is held in the directory pub/ESPript. 相似文献
7.
Andreas WM Dress Christoph Flamm Guido Fritzsch Stefan Grünewald Matthias Kruspe Sonja J Prohaska Peter F Stadler 《Algorithms for molecular biology : AMB》2008,3(1):7
Motivation
Sequence-based methods for phylogenetic reconstruction from (nucleic acid) sequence data are notoriously plagued by two effects: homoplasies and alignment errors. Large evolutionary distances imply a large number of homoplastic sites. As most protein-coding genes show dramatic variations in substitution rates that are not uncorrelated across the sequence, this often leads to a patchwork pattern of (i) phylogenetically informative and (ii) effectively randomized regions. In highly variable regions, furthermore, alignment errors accumulate resulting in sometimes misleading signals in phylogenetic reconstruction. 相似文献8.
Background
Obtaining an accurate sequence alignment is fundamental for consistently analyzing biological data. Although this problem may be efficiently solved when only two sequences are considered, the exact inference of the optimal alignment easily gets computationally intractable for the multiple sequence alignment case. To cope with the high computational expenses, approximate heuristic methods have been proposed that address the problem indirectly by progressively aligning the sequences in pairs according to their relatedness. These methods however are not flexible to change the alignment of an already aligned group of sequences in the view of new data, resulting thus in compromises on the quality of the deriving alignment. In this paper we present ReformAlign, a novel meta-alignment approach that may significantly improve on the quality of the deriving alignments from popular aligners. We call ReformAlign a meta-aligner as it requires an initial alignment, for which a variety of alignment programs can be used. The main idea behind ReformAlign is quite straightforward: at first, an existing alignment is used to construct a standard profile which summarizes the initial alignment and then all sequences are individually re-aligned against the formed profile. From each sequence-profile comparison, the alignment of each sequence against the profile is recorded and the final alignment is indirectly inferred by merging all the individual sub-alignments into a unified set. The employment of ReformAlign may often result in alignments which are significantly more accurate than the starting alignments.Results
We evaluated the effect of ReformAlign on the generated alignments from ten leading alignment methods using real data of variable size and sequence identity. The experimental results suggest that the proposed meta-aligner approach may often lead to statistically significant more accurate alignments. Furthermore, we show that ReformAlign results in more substantial improvement in cases where the starting alignment is of relatively inferior quality or when the input sequences are harder to align.Conclusions
The proposed profile-based meta-alignment approach seems to be a promising and computationally efficient method that can be combined with practically all popular alignment methods and may lead to significant improvements in the generated alignments.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2105-15-265) contains supplementary material, which is available to authorized users. 相似文献9.
There is a lack of programs available that focus on providing an overview of an aligned set of sequences such that the comparison of homologous sites becomes comprehensible and intuitive. Being able to identify similarities, differences, and patterns within a multiple sequence alignment is biologically valuable because it permits visualization of the distribution of a particular feature and inferences about the structure, function, and evolution of the sequences in question. We have therefore created a web server, fingerprint, which combines the characteristics of existing programs that represent identity, variability, charge, hydrophobicity, solvent accessibility, and structure along with new visualizations based on composition, heterogeneity, heterozygosity, dN/dS and nucleotide diversity. fingerprint is easy to use and globally accessible through any computer using any major browser. fingerprint is available at http://evol.mcmaster.ca/fingerprint/ . 相似文献
10.
Shah N Couronne O Pennacchio LA Brudno M Batzoglou S Bethel EW Rubin EM Hamann B Dubchak I 《Bioinformatics (Oxford, England)》2004,20(5):636-643
MOTIVATION: The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. RESULTS: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a framework based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. AVAILABILITY: Phylo-VISTA is available at http://www-gsd.lbl.gov/phylovista. It requires an Internet browser with Java Plug-in 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu 相似文献
11.
Klaere S Gesell T von Haeseler A 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1512):4041-4047
We introduce another view of sequence evolution. Contrary to other approaches, we model the substitution process in two steps. First we assume (arbitrary) scaled branch lengths on a given phylogenetic tree. Second we allocate a Poisson distributed number of substitutions on the branches. The probability to place a mutation on a branch is proportional to its relative branch length. More importantly, the action of a single mutation on an alignment column is described by a doubly stochastic matrix, the so-called one-step mutation matrix. This matrix leads to analytical formulae for the posterior probability distribution of the number of substitutions for an alignment column. 相似文献
12.
Höchsmann M Voss B Giegerich R 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2004,1(1):53-62
In functional, noncoding RNA, structure is often essential to function. While the full 3D structure is very difficult to determine, the 2D structure of an RNA molecule gives good clues to its 3D structure, and for molecules of moderate length, it can be predicted with good reliability. Structure comparison is, in analogy to sequence comparison, the essential technique to infer related function. We provide a method for computing multiple alignments of RNA secondary structures under the tree alignment model, which is suitable to cluster RNA molecules purely on the structural level, i.e., sequence similarity is not required. We give a systematic generalization of the profile alignment method from strings to trees and forests. We introduce a tree profile representation of RNA secondary structure alignments which allows reasonable scoring in structure comparison. Besides the technical aspects, an RNA profile is a useful data structure to represent multiple structures of RNA sequences. Moreover, we propose a visualization of RNA consensus structures that is enriched by the full sequence information. 相似文献
13.
Complete nucleotide sequence of the group I RNA bacteriophage fr 总被引:4,自引:0,他引:4
M R Adhin A Avots V Berzin G P Overbeek J van Duin 《Biochimica et biophysica acta》1990,1050(1-3):104-109
We report the complete nucleotide sequence of the group I RNA bacteriophage fr. The entire genome consists of 3575 nucleotides, six nucleotides more than the only other sequenced group I representative, MS2. The greatest divergence between these phages occurs in the 5' terminal region of the A gene, while the lysis-replicase gene overlap, the coat gene and the central region of the replicase gene are highly conserved. Overall sequence homology between fr and MS2 is 77%. Here, we present a general comparison between the two phages. In the accompanying paper we use phylogenetic sequence comparison between MS2 and fr to deduce the secondary structure at the 3' untranslated region. 相似文献
14.
Background
In 2004, Bejerano et al. announced the startling discovery of hundreds of "ultraconserved elements", long genomic sequences perfectly conserved across human, mouse, and rat. Their announcement stimulated a flurry of subsequent research. 相似文献15.
Motivation
Genome-wide screens for structured ncRNA genes in mammals, urochordates, and nematodes have predicted thousands of putative ncRNA genes and other structured RNA motifs. A prerequisite for their functional annotation is to determine the reading direction with high precision.Results
While folding energies of an RNA and its reverse complement are similar, the differences are sufficient at least in conjunction with substitution patterns to discriminate between structured RNAs and their complements. We present here a support vector machine that reliably classifies the reading direction of a structured RNA from a multiple sequence alignment and provides a considerable improvement in classification accuracy over previous approaches.Software
RNAstrand is freely available as a stand-alone tool from http://www.bioinf.uni-leipzig.de/Software/RNAstrand and is also included in the latest release of RNAz, a part of the Vienna RNA Package. 相似文献16.
Saikat Chakrabarti Christopher J Lanczycki Anna R Panchenko Teresa M Przytycka Paul A Thiessen Stephen H Bryant 《BMC bioinformatics》2006,7(1):499
Background
Accurate multiple sequence alignments of proteins are very important in computational biology today. Despite the numerous efforts made in this field, all alignment strategies have certain shortcomings resulting in alignments that are not always correct. Refinement of existing alignment can prove to be an intelligent choice considering the increasing importance of high quality alignments in large scale high-throughput analysis. 相似文献17.
In this work we present a web-based tool for estimating multiple alignment quality using Bayesian hypothesis testing. The proposed method is very simple, easily implemented and not time consuming with a linear complexity. We evaluated method against a series of different alignments (a set of random and biologically derived alignments) and compared the results with tools based on classical statistical methods (such as sFFT and csFFT). Taking correlation coefficient as an objective criterion of the true quality, we found that Bayesian hypothesis testing performed better on average than the classical methods we tested. This approach may be used independently or as a component of any tool in computational biology which is based on the statistical estimation of alignment quality. AVAILABILITY: http://www.fmi.ch/groups/functional.genomics/tool.htm. SUPPLEMENTARY INFORMATION: Supplementary data are available from http://www.fmi.ch/groups/functional.genomics/tool-Supp.htm. 相似文献
18.
19.
The mechanism of group I self-splicing: an internal guide sequence can be provided in trans.
下载免费PDF全文

We have reconstituted a group I self-splicing reaction between two RNA molecules with different functional RNA parts: a substrate molecule containing the 5' splice site and a functional internal guide sequence (IGS), and a ribozyme molecule with core structure elements and splice sites but a mutated IGS. The 5' exon of the substrate molecule is ligated in trans to the 3' exon of the ribozyme molecule, suggesting that the deficient IGS in the ribozyme can be replaced by an externally added IGS present on the substrate molecule. This result is different from catalysis mediated by proteins where it is not possible to dissect the specificity of an enzyme from its catalytic activity. 相似文献
20.
Wuster A Venkatakrishnan AJ Schertler GF Babu MM 《Bioinformatics (Oxford, England)》2010,26(22):2906-2907
MOTIVATION: Spial (Specificity in alignments) is a tool for the comparative analysis of two alignments of evolutionarily related sequences that differ in their function, such as two receptor subtypes. It highlights functionally important residues that are either specific to one of the two alignments or conserved across both alignments. It permits visualization of this information in three complementary ways: by colour-coding alignment positions, by sequence logos and optionally by colour-coding the residues of a protein structure provided by the user. This can aid in the detection of residues that are involved in the subtype-specific interaction with a ligand, other proteins or nucleic acids. Spial may also be used to detect residues that may be post-translationally modified in one of the two sets of sequences. AVAILABILITY: http://www.mrc-lmb.cam.ac.uk/genomes/spial/; supplementary information is available at http://www.mrc-lmb.cam.ac.uk/genomes/spial/help.html. 相似文献