首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within hours after colonization of the light organ of the squid Euprymna scolopes by its bacterial symbiont Vibrio fischeri, the symbiont triggers morphogenesis of the light organ. This process involves the induction of apoptosis in the cells of two superficial ciliated epithelial fields and the gradual regression of these surface structures over a 96-h period. In this study, microscopic examination of various squid tissues revealed that host hemocytes specifically migrate into the epithelial fields on the surface of the light organ, a process that begins before any other indication of symbiont-induced morphogenesis. Experimental manipulations of symbiont-signal delivery revealed that hemocyte infiltration alone is not sufficient to induce regression, and high numbers of hemocytes are not necessary for the induction of apoptosis or the initiation of regression. However, studies with mutant strains of V. fischeri that show a defect in the induction of hemocyte infiltration provided evidence that high numbers of hemocytes facilitate the regression of the epithelial fields. In addition, a change in hemocyte gene expression, as indicated by the up-regulation of the C8 subunit of the proteasome, correlates with the induction of light organ morphogenesis, suggesting that bacteria-induced molecular changes in the hemocytes are required for the participation of these host cells in the regression process.  相似文献   

2.
During colonization of the Euprymna scolopes light organ, symbiotic Vibrio fischeri cells aggregate in mucus secreted by a superficial ciliated host epithelium near the sites of eventual inoculation. Once aggregated, symbiont cells migrate through ducts into epithelium-lined crypts, where they form a persistent association with the host. In this study, we provide evidence that nitric oxide synthase (NOS) and its product nitric oxide (NO) are active during the colonization of host tissues by V. fischeri. NADPH-diaphorase staining and immunocytochemistry detected NOS, and the fluorochrome diaminofluorescein (DAF) detected its product NO in high concentrations in the epithelia of the superficial ciliated fields, ducts, and crypt antechambers. In addition, both NOS and NO were detected in vesicles within the secreted mucus where the symbionts aggregate. In the presence of NO scavengers, cells of a non-symbiotic Vibrio species formed unusually large aggregates outside of the light organ, but these bacteria did not colonize host tissues. In contrast, V. fischeri effectively colonized the crypts and irreversibly attenuated the NOS and NO signals in the ducts and crypt antechambers. These data provide evidence that NO production, a defense response of animal cells to bacterial pathogens, plays a role in the interactions between a host and its beneficial bacterial partner during the initiation of symbiotic colonization.  相似文献   

3.
The sepiolid squid Euprymna scolopes forms a bioluminescent mutualism with the luminous bacterium Vibrio fischeri, harboring V. fischeri cells in a complex ventral light organ and using the bacterial light in predator avoidance. To characterize the contribution of V. fischeri to the growth and development of E. scolopes and to define the long-term effects of bacterial colonization on light organ morphogenesis, we developed a mariculture system for the culture of E. scolopes from hatching to adulthood, employing artificial seawater, lighting that mimicked that of the natural environment, and provision of prey sized to match the developmental stage of E. scolopes. Animals colonized by V. fischeri and animals cultured in the absence of V. fischeri (aposymbiotic) grew and survived equally well, developed similarly, and reached sexual maturity at a similar age. Development of the light organ accessory tissues (lens, reflectors, and ink sac) was similar in colonized and aposymbiotic animals with no obvious morphometric or histological differences. Colonization by V. fischeri influenced regression of the ciliated epithelial appendages (CEAs), the long-term growth of the light organ epithelial tubules, and the appearance of the cells composing the ciliated ducts, which exhibit characteristics of secretory tissue. In certain cases, aposymbiotic animals retained the CEAs in a partially regressed state and remained competent to initiate symbiosis with V. fischeri into adulthood. In other cases, the CEAs regressed fully in aposymbiotic animals, and these animals were not colonizable. The results demonstrate that V. fischeri is not required for normal growth and development of the animal or for development of the accessory light organ tissues and that morphogenesis of only those tissues coming in contact with the bacteria (CEAs, ciliated ducts, and light organ epithelium) is altered by bacterial colonization of the light organ. Therefore, V. fischeri apparently makes no major metabolic contribution to E. scolopes beyond light production, and post-embryonic development of the light organ is essentially symbiont independent. J. Exp. Zool. 286:280-296, 2000.  相似文献   

4.
During light organ colonization of the squid Euprymna scolopes by Vibrio fischeri, host-derived mucus provides a surface upon which environmental V. fischeri forms a biofilm and aggregates prior to colonization. In this study we defined the temporal and spatial characteristics of this process. Although permanent colonization is specific to certain strains of V. fischeri, confocal microscopy analyses revealed that light organ crypt spaces took up nonspecific bacteria and particles that were less than 2 micro m in diameter during the first hour after hatching. However, within 2 h after inoculation, these cells or particles were not detectable, and further entry by nonspecific bacteria or particles appeared to be blocked. Exposure to environmental gram-negative or -positive bacteria or bacterial peptidoglycan caused the cells of the organ's superficial ciliated epithelium to release dense mucin stores at 1 to 2 h after hatching that were used to form the substrate upon which V. fischeri formed a biofilm and aggregated. Whereas the uncolonized organ surface continued to shed mucus, within 48 h of symbiont colonization mucus shedding ceased and the formation of bacterial aggregations was no longer observed. Eliminating the symbiont from the crypts with antibiotics restored the ability of the ciliated fields to secrete mucus and aggregate bacteria. While colonization by V. fischeri inhibited mucus secretion by the surface epithelium, secretion of host-derived mucus was induced in the crypt spaces. Together, these data indicate that although initiation of mucus secretion from the superficial epithelium is nonspecific, the inhibition of mucus secretion in these cells and the concomitant induction of secretion in the crypt cells are specific to natural colonization by V. fischeri.  相似文献   

5.
6.
Harmful and beneficial bacterium-host interactions induce similar host-tissue changes that lead to contrasting outcomes of association. A life-long association between Vibrio fischeri and the light organ of its host Euprymna scolopes begins when the squid collects bacteria from the surrounding seawater using mucus secreted from ciliated epithelial appendages. Following colonization, the bacterium causes changes in host tissue including cessation of mucus shedding, and apoptosis and regression of the appendages that may limit additional bacterial interactions. We evaluated whether delivery of morphogenic signals is influenced by GacA, a virulence regulator in pathogens, which also influences squid-colonization by V. fischeri. Low-level colonization by a GacA mutant led to regression of the ciliated appendages. However, the GacA mutant did not induce cessation of mucus shedding, nor did it trigger apoptosis in the appendages, a phenotype that normally correlates with their regression. Because apoptosis is triggered by lipopolysaccharide, we examined the GacA mutant and determined that it had an altered lipopolysaccharide profile as well as an increased sensitivity to detergents. GacA-mutant-colonized animals were highly susceptible to invasion by secondary colonizers, suggesting that the GacA mutant's inability to signal the full programme of light-organ responses permitted the prolonged recruitment of additional symbionts.  相似文献   

7.
Bacterial pathogens typically upregulate the host's production of nitric oxide synthase (NOS) and nitric oxide (NO) as antimicrobial agents, a response that is often mediated by microbe-associated molecular patterns (MAMPs) of the pathogen. In contrast, previous studies of the beneficial Euprymna scolopes/Vibrio fischeri symbiosis demonstrated that symbiont colonization results in attenuation of host NOS/NO, which occurs in high levels in hatchling light organs. Here, we sought to determine whether V. fischeri MAMPs, specifically lipopolysaccharide (LPS) and the peptidoglycan derivative tracheal cytotoxin (TCT), attenuate NOS/NO, and whether this activity mediates the MAMPs-induced light organ morphogenesis. Using confocal microscopy, we characterized levels of NOS with immunocytochemistry and NO with a NO-specific fluorochrome. When added exogenously to seawater containing hatchling animals, V. fischeri LPS and TCT together, but not individually, induced normal NOS/NO attenuation. Further, V. fischeri mutants defective in TCT release did not. Experiments with NOS inhibitors and NO donors provided evidence that NO mediates apoptosis and morphogenesis associated with symbiont colonization. Attenuation of NOS/NO by LPS and TCT in the squid-vibrio symbiosis provides another example of how the host's response to MAMPs depends on the context. These data also provide a mechanism by which symbiont MAMPs regulate host development.  相似文献   

8.
During light organ colonization of the squid Euprymna scolopes by Vibrio fischeri, host-derived mucus provides a surface upon which environmental V. fischeri forms a biofilm and aggregates prior to colonization. In this study we defined the temporal and spatial characteristics of this process. Although permanent colonization is specific to certain strains of V. fischeri, confocal microscopy analyses revealed that light organ crypt spaces took up nonspecific bacteria and particles that were less than 2 μm in diameter during the first hour after hatching. However, within 2 h after inoculation, these cells or particles were not detectable, and further entry by nonspecific bacteria or particles appeared to be blocked. Exposure to environmental gram-negative or -positive bacteria or bacterial peptidoglycan caused the cells of the organ's superficial ciliated epithelium to release dense mucin stores at 1 to 2 h after hatching that were used to form the substrate upon which V. fischeri formed a biofilm and aggregated. Whereas the uncolonized organ surface continued to shed mucus, within 48 h of symbiont colonization mucus shedding ceased and the formation of bacterial aggregations was no longer observed. Eliminating the symbiont from the crypts with antibiotics restored the ability of the ciliated fields to secrete mucus and aggregate bacteria. While colonization by V. fischeri inhibited mucus secretion by the surface epithelium, secretion of host-derived mucus was induced in the crypt spaces. Together, these data indicate that although initiation of mucus secretion from the superficial epithelium is nonspecific, the inhibition of mucus secretion in these cells and the concomitant induction of secretion in the crypt cells are specific to natural colonization by V. fischeri.  相似文献   

9.
10.
Shigella flexneri replicates in the cytoplasm of host cells, where it nucleates host cell actin filaments at one pole of the bacterial cell to form a 'comet tail' that propels the bacterium through the host's cytoplasm. To determine whether the ability to move by actin-based motility is sufficient for subsequent formation of membrane-bound protrusions and intercellular spread, we conferred the ability to nucleate actin on a heterologous bacterium, Escherichia coli . Previous work has shown that IcsA (VirG), the molecule that is necessary and sufficient for actin nucleation and actin-based motility, is distributed in a unipolar fashion on the surface of S. flexneri . Maintenance of the unipolar distribution of IcsA depends on both the S. flexneri outer membrane protease IcsP (SopA) and the structure of the lipopolysaccharide (LPS) in the outer membrane. We co-expressed IcsA and IcsP in two strains of E. coli that differed in their LPS structures. The E. coli were engineered to invade host cells by expression of invasin from Yersinia pseudotuberculosis and to escape the phagosome by incubation in purified listeriolysin O (LLO) from Listeria monocytogenes . All E. coli strains expressing IcsA replicated in host cell cytoplasm and moved by actin-based motility. Actin-based motility alone was sufficient for the formation of membrane protrusions and uptake by recipient host cells. The presence of IcsP and an elaborate LPS structure combined to enhance the ability of E. coli to form protrusions at the same frequency as S. flexneri , quantitatively reconstituting this step in pathogen intercellular spread in a heterologous organism. The frequency of membrane protrusion formation across all strains tested correlates with the efficiency of unidirectional actin-based movement, but not with bacterial speed.  相似文献   

11.
 Associations with pathogenic bacteria have recently been shown to initiate apoptotic programs in the cells of their animal hosts, where host cell death is hypothesized to be a response of the immune system, either initiated as a mechanism of host defense or bacterial offense. In this study, we present evidence that bacterial initiation of apoptosis is neither restricted to pathogenesis nor to the initation of an immune response. In the cooperative association between the sepiolid squid Euprymna scolopes and the luminous bacterium Vibrio fischeri, the bacteria induce a dramatic morphogenesis of the host tissues during the first few days of interaction between these partners. The most striking change is the bacteria-triggered loss of an extensive superficial epithelium that potentiates the infection process. Our analyses of these tissues revealed that the bacteria induce apoptosis in the cells that comprise this epithelium within hours of the interaction with bacteria. Ultrastructural analysis revealed that after 24 h the integrity of the epithelium had been lost, i.e., the basement membrane had degenerated and the majority of the cells exhibited signs of apoptosis, most notably chromatin condensation. Analysis of these tissues with probes that reveal intracellular acidification showed that the cells first undergo an initial acidification beginning about 6–8 h after exposure to V. fischeri. As determined by end-labeling of DNA fragments, extensive endonuclease activity was detected at approximately 16–20 h post-infection. These data provide evidence that cooperative bacteria can participate in the remodeling of host tissues through the induction of host apoptotic programs. Received: 10 November 1997 / Accepted: 22 April 1998  相似文献   

12.
Previous studies of the Euprymna scolopes-Vibrio fischeri symbiosis have demonstrated that, during colonization, the hatchling host secretes mucus in which gram-negative environmental bacteria amass in dense aggregations outside the sites of infection. In this study, experiments with green fluorescent protein-labeled symbiotic and nonsymbiotic species of gram-negative bacteria were used to characterize the behavior of cells in the aggregates. When hatchling animals were exposed to 10(3) to 10(6) V. fischeri cells/ml added to natural seawater, which contains a mix of approximately 10(6) nonspecific bacterial cells/ml, V. fischeri cells were the principal bacterial cells present in the aggregations. Furthermore, when animals were exposed to equal cell numbers of V. fischeri (either a motile or a nonmotile strain) and either Vibrio parahaemolyticus or Photobacterium leiognathi, phylogenetically related gram-negative bacteria that also occur in the host's habitat, the symbiont cells were dominant in the aggregations. The presence of V. fischeri did not compromise the viability of these other species in the aggregations, and no significant growth of V. fischeri cells was detected. These findings suggested that dominance results from the ability of V. fischeri either to accumulate or to be retained more effectively within the mucus. Viability of the V. fischeri cells was required for both the formation of tight aggregates and their dominance in the mucus. Neither of the V. fischeri quorum-sensing compounds accumulated in the aggregations, which suggested that the effects of these small signal molecules are not critical to V. fischeri dominance. Taken together, these data provide evidence that the specificity of the squid-vibrio symbiosis begins early in the interaction, in the mucus where the symbionts aggregate outside of the light organ.  相似文献   

13.
Infection of mucosal surfaces by N. gonorrhoeae and N. meningitidis may result in inflammation indicating potential injury to host cells. We used human fallopian tube organ cultures (FTOC) and human nasopharyngeal organ cultures (NPOC) to study the mechanisms by which gonococci and meningococci damage human mucosal surfaces. Early in the course of FTOC infected with gonococci and NPOC infected with meningococci, damage was most apparent to ciliary activity. Loss of ciliary activity was accompanied by sloughing of ciliated cells. The damage to ciliated cells was not associated with attachment of gonococci or meningococci to these cells or the presence of organisms within ciliated cells. Infection with the commensal N. subflava did not result in significant damage to human FTOC or NPOC ciliary activity. LPS appears to be a major toxin of gonococci for human FTOC ciliated cells. Gonococcal peptidoglycan fragments also damage FTOC ciliary activity. Both piliated (P+) and nonpiliated (P-) gonococci and meningococci damage FTOC and NPOC ciliary activity, but P+ organisms damage ciliary activity more rapidly than P- organisms. Damage to FTOC ciliated cells was produced by <10 g/ml of purified gonococcal and meningococcal LPS. By 1–2h after exposure to LPS, vesicles containing LPS were distributed throughout the cytoplasm of ciliated cells. Polymyxin B neutralized LPS-induced damage, suggesting that the lipid A portion of LPS was the toxic moiety. In contrast, purified gonococcal and meningococcal LPS at 100 g/ml did not damage human NPOC or FTOC from rabbits, pigs and cows. These studies indicate that N. gonorrhoeae and possibly N. meningitidis damage ciliated epithelial celsl indirectly by release of toxins from the organisms. The differences in susceptibility of FTOC and NPOC to LPS may suggest changes in density of receptors for LPS and may help explain variation in severity of gonococcal and meningococcal interactions at different human mucosal surfaces.  相似文献   

14.
The association of Vibrio fischeri and Euprymna scolopes provides insights into traits essential for symbiosis, and the signals and pathways of bacteria-induced host development. Recent studies have identified important bacterial colonization factors, including those involved in motility, bioluminescence and biofilm formation. Surprising links between symbiosis and pathogenesis have been revealed through discoveries that nitric oxide is a component of the host defense, and that V. fischeri uses a cytotoxin-like molecule to induce host development. Technological advances in this system include the genome sequence of V. fischeri, an expressed sequence tagged library for E. scolopes and the availability of dual-fluorescence markers and confocal microscopy to probe symbiotic structures and the dynamics of colonization.  相似文献   

15.
The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.  相似文献   

16.
We have previously shown that crude bacterial lipopolysaccharide (LPS) preparations markedly increase cGMP levels in rat fetal liver cells in a time- and dose-dependent manner. To provide evidence that this effect was due to LPS and not an impurity in the preparations, three series of experiments were undertaken. First, LPS was prepared from Escherichia coli 055:B5 cells and its cGMP potency assessed at various stages of purification; second, the cGMP activity of three highly purified LPS preparations of known chemical structure was measured, and third, a well characterized LPS was broken into its lipid A and polysaccharide fractions and the cGMP activity of each fraction determined. The results showed that the cGMP stimulatory activity in E. coli 055:B5 cells co-purified in a parallel fashion with the LPS molecule derived from those cells, that the three chemically defined, highly purified LPS preparations were all very potent stimulators of cGMP levels, and that the ability to increase cGMP levels of lipid A prepared from a highly purified LPS was comparable in potency to the intact LPS, whereas the polysaccharide portion of the molecule was without activity. These findings indicate that the cGMP effect of LPS preparation is due to LPS and not a contaminant and that the activity resides within the lipid A moiety of the molecule.  相似文献   

17.
In horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific symbionts that it harvests from the surrounding bacterioplankton. Subsequently, the host must develop long-term tolerance to immunogenic bacterial molecules, such as peptidoglycan and lipopolysaccaride derivatives. We describe the characterization of the activity of a host peptidoglycan recognition protein (EsPGRP2) during establishment of the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont Vibrio fischeri. Using confocal immunocytochemistry, we localized EsPGRP2 to all epithelial surfaces of the animal, and determined that it is exported in association with mucus shedding. Most notably, EsPGRP2 was released by the crypt epithelia into the extracellular spaces housing the symbionts. This translocation occurred only after the symbionts had triggered host morphogenesis, a process that is induced by exposure to the peptidoglycan monomer tracheal cytotoxin (TCT), a bacterial 'toxin' that is constitutively exported by V. fischeri. Enzymatic analyses demonstrated that, like many described PGRPs, EsPGRP2 has a TCT-degrading amidase activity. The timing of EsPGRP2 export into the crypts provides evidence that the host does not export this protein until after TCT induces morphogenesis, and thereafter EsPGRP2 is constantly present in the crypts ameliorating the effects of V. fischeri TCT.  相似文献   

18.
During the onset of the cooperative association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri, the anatomy and morphology of the host's symbiotic organ undergo dramatic changes that require interaction with the bacteria. This morphogenetic process involves an array of tissues, including those in direct contact with, as well as those remote from, the symbiotic bacteria. The bacteria induce the developmental program soon after colonization of the organ, although complete morphogenesis requires 96 h. In this study, to determine critical time points, we examined the biochemistry underlying bacterium-induced host development using two-dimensional polyacrylamide gel electrophoresis. Specifically, V. fischeri-induced changes in the soluble proteome of the symbiotic organ during the first 96 h of symbiosis were identified by comparing the protein profiles of symbiont-colonized and uncolonized organs. Both symbiosis-related changes and age-related changes were analyzed to determine what proportion of the differences in the proteomes was the result of specific responses to interaction with bacteria. Although no differences were detected over the first 24 h, numerous symbiosis-related changes became apparent at 48 and 96 h and were more abundant than age-related changes. In addition, many age-related protein changes occurred 48 h sooner in symbiotic animals, suggesting that the interaction of squid tissue with V. fischeri cells accelerates certain developmental processes of the symbiotic organ. These data suggest that V. fischeri-induced modifications in host tissues that occur in the first 24 h of the symbiosis are independent of marked alterations in the patterns of abundant proteins but that the full 4-day morphogenetic program requires significant alteration of the host soluble proteome.  相似文献   

19.
IL-1 induction-capacity of defined lipopolysaccharide partial structures   总被引:23,自引:0,他引:23  
Natural and synthetic lipid A as well as natural and synthetic oligosaccharide partial structures of LPS were examined in dose-response experiments to define the minimal structure necessary for IL-1 induction and release in cultures of human mononuclear cells. Wild type LPS (S. abortus equi) and rough mutant LPS was active in minimal-doses of 1 to 100 pg/ml, whereas synthetic heptaacyl and hexaacyl lipid A (Salmonella minnesota and Escherichia coli lipid A, respectively) induced IL-1 in minimal-doses of 100 to 1,000 pg/ml and 10 to 1,000 pg/ml, respectively. Nanogram amounts (0.1 to 10 ng/ml) of synthetic monodephospho partial structures of E. coli lipid A were necessary for IL-1 induction. Synthetic pentaacyl partial structures induced IL-1 very weakly. Synthetic tetraacyl and bisacyl partial structures lacking non-hydroxylated fatty acids were not active. Compared to LPS million-fold higher doses of natural and synthetic 3-deoxy-D-manno-octulosonic acid containing core oligosaccharides were necessary for IL-1 induction. Dose-response investigations with LPS and natural or synthetic partial structures established the following hierarchy in IL-1 induction-capacity: LPS greater than lipid A much greater than lipid A partial structures greater than core oligosaccharides greater than oligoacyl lipid A. Lipid A was shown here to be the portion of LPS mainly responsible for induction of IL-1 activity. The high potency of lipid A in inducing IL-1 release and the failure of the precursor Ia of lipid A to induce IL-1 production and release was also observed measuring intracellular IL-1 activity after freeze-thawing the cells. Levels of IL-1 beta mRNA in extracts of mononuclear cells correlated with biologic activity. In co-incubation experiments, precursor Ia of lipid A produced dose-dependent inhibition of production and release of IL-1 activity induced by lipid A or LPS, but not by Staphylococcus epidermidis or PHA. Incubation of cells with precursor Ia for 1h, followed by a medium change and further incubation of stimulus without precursor Ia of lipid A also resulted in inhibition. We conclude that lipid A is the main portion of LPS responsible for induction of IL-1, and that specific activation- and/or binding-mechanisms are involved in stimulation of cells with LPS and/or lipid A.  相似文献   

20.
To achieve functional bioluminescence, the developing light organ of newly hatched juveniles of the Hawaiian squid Euprymna scolopes must become colonized by luminous, symbiosis-competent Vibrio fischeri present in the ambient seawater. This benign infection occurs rapidly in animals placed in seawater from the host's natural habitat. Therefore, it was surprising that colony hybridization studies with a V. fischeri-specific luxA gene probe indicated the presence of only about 2 CFU of V. fischeri per ml of this infective seawater. To examine this paradox, we estimated the total concentration of V. fischeri cells present in seawater from the host's habitat in two additional ways. In the first approach, the total bacterial assemblage in samples of seawater was collected on polycarbonate membrane filters and used as a source of both a crude cell lysate and purified DNA. These preparations were then assayed by quantitative DNA-DNA hybridization with the luxA gene probe. The results suggested the presence of between 200 and 400 cells of V. fischeri per ml of natural seawater, a concentration more than 100 times that revealed by colony hybridization. In the second approach, we amplified V. fischeri-specific luxA sequences from microliter volumes of natural seawater by PCR. Most-probable-number analyses of the frequency of positive PCR results from cell lysates in these small volumes gave an estimate of the concentration of V. fischeri luxA gene targets of between 130 and 1,680 copies per ml. From these measurements, we conclude that in their natural seawater environment, the majority of V. fischeri cells become nonculturable while remaining viable and symbiotically infective. Experimental studies indicated that V. fischeri cells suspended in natural Hawaiian seawater enter such a state within a few days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号