首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
含自杀性质粒 PJB4JI::Mu::Tn5的大肠杆菌1830与四株柠檬酸细菌作接合杂交均能获得Kanr转移接合子。其中一株(c-3-1)的Kayr转移接合子中绝大部分对庆大霉素敏感。鉴别了3000个这样的转移接合子菌落获得了2l株营养缺陷型,其中赖氨酸1株,尿嘧啶1株,精氨酸2株,异亮氨酸2株,组氨酸2株,甲硫氨酸株,苯丙氨酸1株,酪氨酸1株,丝氨酸1株,苏氨酸1株,亮氨酸3株,脯氨酸1株,腺嘌呤3株和乳糖利用1株。用琼脂糖电泳检查部分营养缺陷型突变体DNA均未发现自杀性质粒PJB4JI::Mu::Tn5,以32p标记的Tn5 DNA为探针与每个营养缺陷型的染色体作杂交均看到了Tn5 DNA同源序列的存在。由此得出结论,这些营养缺陷型产生于转座子Tn5从自杀性质粒PJB4JI到c-3-1染色体的转座。  相似文献   

2.
The reaction of alpha-bungarotoxin (alpha-BuTX) with 1,2-cyclohexanedione resulted in the modification of only Arg-72 but arginine at position 36 or 72, as well as both were modified by reaction of the toxin with p-hydroxyphenylglyoxal. No derivative modified at Arg-25 was obtained, indicating that this residue may be located in the interior region of alpha-BuTX molecule. Monoderivative at Arg-72 showed about 50% of the lethal toxicity and binding activity of alpha-BuTX to nicotinic acetylcholine receptor (AChR), while the activity was decreased to one-third when the invariant Arg-36 was modified, indicating that the latter residue is more closely related to the interaction of the toxin with AChR. Approx. 13% of the residual activity was observed when both arginine residues at 36 and 72 were modified. The antigenicity of alpha-BuTX was still retained essentially intact after Arg-36 or -72 was modified, whereas it decreased to 50% when both these arginine residues were modified. The present study indicates that Arg-36 and -72 in alpha-BuTX may be involved in the multipoint contact between the toxin and AChR, but neither is absolutely essential for the binding.  相似文献   

3.
Gao Y  Wang Y 《Biochemistry》2006,45(51):15654-15660
Methylglyoxal (MG) is an important glycating agent produced under physiological conditions. MG could react with DNA and proteins to generate advanced glycation end products. Human hemoglobin, the most abundant protein in blood cells, has not been systematically investigated as the target protein for methylglyoxal modification. Here we examined carefully, by using HPLC coupled with tandem mass spectrometry (LC-MS/MS), the covalent modifications of human hemoglobin induced by methylglyoxal. Our results revealed that hemoglobin could be modified by methylglyoxal, and the major form of modification was found to be the hydroimidazolone derivative of arginine residues. In addition, Arg-92 and Arg-141 in the alpha chain as well as Arg-40 and Arg-104 in the beta chain were modified, whereas two other arginine residues, that is, Arg-31 in the alpha chain and Arg-30 in the beta chain, were not modified. Semiquantitative measurement for adduct formation, together with the analysis of the X-ray structure of hemoglobin, showed that the extents of arginine modification were highly correlated with the solvent accessibilities of these residues. The facile formation of hydroimidazolone derivatives of arginine residues in hemoglobin by methylglyoxal at physiologically relevant concentrations suggested that this type of modification might occur in vivo. The unambiguous determination of the sites and extents of methylglyoxal modifications of arginines in hemoglobin provided a basis for understanding the implications of these modifications and for employing this type of hemoglobin modification as molecular biomarkers for clinical applications.  相似文献   

4.
Receptor interacting protein 140 (RIP140), a ligand-dependent corepressor for nuclear receptors, can be modified by arginine methylation. Three methylated arginine residues, at Arg-240, Arg-650, and Arg-948, were identified by mass spectrometric analysis. Site-directed mutagenesis studies demonstrated the functionality of these arginine residues. The biological activity of RIP140 was suppressed by protein arginine methyltransferase 1 (PRMT1) due to RIP140 methylation, which reduced the recruitment of histone deacetylases to RIP140 and facilitated its nuclear export by enhancing interaction with exportin 1. A constitutive negative (Arg/Ala) mutant of RIP140 was resistant to the effect of PRMT1, and a constitutive positive (Arg/Phe) mutation mimicked the effect of arginine methylation. The biological activities of the wild type and the mutant proteins were examined in RIP140-null MEF cells. This study uncovered a novel means to inactivate, or suppress, RIP140, and demonstrated protein arginine methylation as a critical type of modification for corepressor.  相似文献   

5.
Lactic acid bacteria require rich media since, due to mutations in their biosynthetic genes, they are unable to synthesize numerous amino acids and nucleobases. Arginine biosynthesis and pyrimidine biosynthesis have a common intermediate, carbamoyl phosphate (CP), whose synthesis requires CO(2). We investigated the extent of genetic lesions in both the arginine biosynthesis and pyrimidine biosynthesis pathways in a collection of lactobacilli, including 150 strains of Lactobacillus plantarum, 32 strains of L. pentosus, 15 strains of L. paraplantarum, and 10 strains of L. casei. The distribution of prototroph and auxotroph phenotypes varied between species. All L. casei strains, no L. paraplantarum strains, two L. pentosus strains, and seven L. plantarum strains required arginine for growth. Arginine auxotrophs were more frequently found in L. plantarum isolated from milk products than in L. plantarum isolated from fermented plant products or humans; association with dairy products might favor arginine auxotrophy. In L. plantarum the argCJBDF genes were functional in most strains, and when they were inactive, only one gene was mutated in more than one-half of the arginine auxotrophs. Random mutation may have generated these auxotrophs since different arg genes were inactivated (there were single point mutations in three auxotrophs and nonrevertible genetic lesions in four auxotrophs). These data support the hypothesis that lactic acid bacteria evolve by progressively loosing unnecessary genes upon adaptation to specific habitats, with genome evolution towards cumulative DNA degeneration. Although auxotrophy for only uracil was found in one L. pentosus strain, a high CO(2) requirement (HCR) for arginine and pyrimidine was common; it was found in 74 of 207 Lactobacillus strains tested. These HCR auxotrophs may have had their CP cellular pool-related genes altered or deregulated.  相似文献   

6.
Human α-defensins, such as human α-defensin 5 (HD5), block infection of non-enveloped viruses, including human adenoviruses (AdV), papillomaviruses (HPV), and polyomaviruses. Through mutational analysis of HD5, we have identified arginine residues that contribute to antiviral activity against AdV and HPV. Of two arginine residues paired on one face of HD5, Arg-28 is critical for both viruses, while Arg-9 is only important for AdV. Two arginine residues on the opposite face of the molecule (Arg-13 and Arg-32) and unpaired Arg-25 are less important for both. In addition, hydrophobicity at residue 29 is a major determinant of anti-adenoviral activity, and a chemical modification that prevents HD5 self-association was strongly attenuating. Although HD5 binds to the capsid of AdV, the molecular basis for this interaction is undefined. Capsid binding by HD5 is not purely charge-dependent, as substitution of lysine for Arg-9 and Arg-28 was deleterious. Analysis of HD5 analogs that retained varying levels of potency demonstrated that anti-adenoviral activity is directly correlated with HD5 binding to the virus, confirming that the viral capsid rather than the cell is the relevant target. Also, AdV aggregation induced by HD5 binding is not sufficient for neutralization. Rather, these studies confirm that the major mechanism of HD5-mediated neutralization of AdV depends upon specific binding to the viral capsid through interactions mediated in part by critical arginine residues, hydrophobicity at residue 29, and multimerization of HD5, which increases initial binding of virus to the cell but prevents subsequent viral uncoating and genome delivery to the nucleus.  相似文献   

7.
The use of “heavy” isotope-labeled arginine for stable isotope labeling by amino acids in cell culture (SILAC) mass spectrometry in the fission yeast Schizosaccharomyces pombe is hindered by the fact that under normal conditions, arginine is extensively catabolized in vivo, resulting in the appearance of “heavy”-isotope label in several other amino acids, most notably proline, but also glutamate, glutamine and lysine. This “arginine conversion problem” significantly impairs quantification of mass spectra. Previously, we developed a method to prevent arginine conversion in fission yeast SILAC, based on deletion of genes involved in arginine catabolism. Here we show that although this method is indeed successful when 13C6-arginine (Arg-6) is used for labeling, it is less successful when 13C6 15N4-arginine (Arg-10), a theoretically preferable label, is used. In particular, we find that with this method, “heavy”-isotope label derived from Arg-10 is observed in amino acids other than arginine, indicating metabolic conversion of Arg-10. Arg-10 conversion, which severely complicates both MS and MS/MS analysis, is further confirmed by the presence of 13C5 15N2-arginine (Arg-7) in arginine-containing peptides from Arg-10-labeled cells. We describe how all of the problems associated with the use of Arg-10 can be overcome by a simple modification of our original method. We show that simultaneous deletion of the fission yeast arginase genes car1+ and aru1+ prevents virtually all of the arginine conversion that would otherwise result from the use of Arg-10. This solution should enable a wider use of heavy isotope-labeled amino acids in fission yeast SILAC.  相似文献   

8.
Neisseria gonorrhoeae strains with nutritional requirements that include arginine (Arg-), uracil (Ura-), and hypoxanthine have attracted attention because of their tendency to cause disseminated infections, as a basis for genetic studies of arginine and pyrimidine biosynthesis, we examined the activities of four enzymes of these pathways in cell-free extracts of both prototrophic and Arg- Ura- strains. Activities of glutamate acetyltransferase, aspartate transcarbamylase, and orotate phosphoribosyltransferase, encoded respectively by argE, pyrB, and pyrE, were absent in some Arg- Ura- isolates. Gonococci that were unable to utilize ornithine for growth in place of citrulline lacked activity of carbamyl phosphate synthetase (encoded by car). Defects of car imposed requirements for both citrulline (or arginine) and a pyrimidine because of the dual role of carbamyl phosphate in the two pathways. Defects of argE, car, pyrB, and pyrE were separately introduced by genetic transformation into representatives of a gonococcal strain which initially was prototrophic. Results of enzyme assays of these isogenic auxotrophic transformants confirmed the gene-enzyme relationships.  相似文献   

9.
The cationic groups of arginine and lysine residues inα-neurotoxin, Toxin a, isolated from king cobra (Ophiophagus hannah) venom were subjected to modification with trinitrobenzene sulfonate (TNBS) andp-hydroxyphenylglyoxal (HPG), respectively. The trinitrophenylated (TNP) derivatives of Toxin a at Lys-10, 56, or 71 showed approximately 25% residual lethality, and modifications on Lys-10 and 56 or Lys-10 and 50 resulted in a decrease of lethality by 84% and 86%, respectively. Modifications on Arg-34, 37, and 70 and Arg-34, 37, and 72 in Toxin a caused a decrease in lethality by 92% and 93%, respectively, and it almost completely lost its lethality and binding activity to nicotinic acetylcholine receptor (nAChR) when all four arginine residues were modified. These results indicate that in addition to the cationic residues on loop II (Arg-34, 37), loop III (Lys-50, 56), and the C-terminal tail (Arg-70, 72; Lys-71), Lys-10 on loop I is also related to the neurotoxicity of Toxin a.  相似文献   

10.
Trypsin activation pathway of rotavirus infectivity.   总被引:5,自引:3,他引:2       下载免费PDF全文
C F Arias  P Romero  V Alvarez    S Lpez 《Journal of virology》1996,70(9):5832-5839
The infectivity of rotaviruses is increased by and most probably is dependent on trypsin treatment of the virus. This proteolytic treatment specifically cleaves VP4, the protein that forms the spikes on the surface of the virions, to polypeptides VP5 and VP8. This cleavage has been reported to occur in rotavirus SA114fM at two conserved, closely spaced arginine residues located at VP4 amino acids 241 and 247. In this work, we have characterized the VP4 cleavage products of rotavirus SA114S generated by in vitro treatment of the virus with increasing concentrations of trypsin and with proteases AspN and alpha-chymotrypsin. The VP8 and VP5 polypeptides were analyzed by gel electrophoresis and by Western blotting (immunoblotting) with antibodies raised to synthetic peptides that mimic the terminal regions of VP4 generated by the trypsin cleavage. It was shown that in addition to arginine residues 241 and 247, VP4 is cleaved at arginine residue 231. These three sites were found to have different susceptibilities to trypsin, Arg-241 > Arg-231 > Arg-247, with the enhancement of infectivity correlating with cleavage at Arg-247 rather than at Arg-231 or Arg-241. Proteases AspN and alpha-chymotrypsin cleaved VP4 at Asp-242 and Tyr-246, respectively, with no significant enhancement of infectivity, although this enhancement could be achieved by further treatment of the virus with trypsin. The VP4 end products of trypsin treatment were a homogeneous VP8 polypeptide comprising VP4 amino acids 1 to 231 and a heterogeneous VP5, which is formed by two polypeptide species (present at a ratio of approximately 1:5) as a result of cleavage at either Arg-241 or Arg-247. A pathway for the trypsin activation of rotavirus infectivity is proposed.  相似文献   

11.
Lactic acid bacteria require rich media since, due to mutations in their biosynthetic genes, they are unable to synthesize numerous amino acids and nucleobases. Arginine biosynthesis and pyrimidine biosynthesis have a common intermediate, carbamoyl phosphate (CP), whose synthesis requires CO2. We investigated the extent of genetic lesions in both the arginine biosynthesis and pyrimidine biosynthesis pathways in a collection of lactobacilli, including 150 strains of Lactobacillus plantarum, 32 strains of L. pentosus, 15 strains of L. paraplantarum, and 10 strains of L. casei. The distribution of prototroph and auxotroph phenotypes varied between species. All L. casei strains, no L. paraplantarum strains, two L. pentosus strains, and seven L. plantarum strains required arginine for growth. Arginine auxotrophs were more frequently found in L. plantarum isolated from milk products than in L. plantarum isolated from fermented plant products or humans; association with dairy products might favor arginine auxotrophy. In L. plantarum the argCJBDF genes were functional in most strains, and when they were inactive, only one gene was mutated in more than one-half of the arginine auxotrophs. Random mutation may have generated these auxotrophs since different arg genes were inactivated (there were single point mutations in three auxotrophs and nonrevertible genetic lesions in four auxotrophs). These data support the hypothesis that lactic acid bacteria evolve by progressively loosing unnecessary genes upon adaptation to specific habitats, with genome evolution towards cumulative DNA degeneration. Although auxotrophy for only uracil was found in one L. pentosus strain, a high CO2 requirement (HCR) for arginine and pyrimidine was common; it was found in 74 of 207 Lactobacillus strains tested. These HCR auxotrophs may have had their CP cellular pool-related genes altered or deregulated.  相似文献   

12.
L-Arginine was required for growth by a high percentage of strains of Staphylococcus species that were niche-specific and/or host-specific, but was usually not required for growth by species showing a wide host range. Growth stimulation patterns with arginine intermediates indicated that most of the auxotrophic strains had blocks in an early step(s) in arginine biosynthesis. These strains were designated phenotypically as Arg(CHG) according to the Salmonella typhimurium classification scheme. Staphylococcus simulans strains appeared to be either ArgA or Arg I. The ArgI strains of S. simulans and S. capitis had moderate to high ornithine carbamoyltransferase (EC 2.1.3.3) activities and therefore could not be designated as argI mutants. ArgI strains in other species had no or very low ornithine carbamoyltransferase activities. All of the natural Staphylococcus auxotrophs tested grew in the presence of L-citrulline and had moderate to high argininosuccinase (EC 4.3.2.1) activities. Arginine auxotrophs of species with a wide host range were often capable of reverting to arginine-independent or complete prototrophic growth, whereas auxotrophs of species that tended to be niche-specific and/or host-specific were incapable of reversion to arginine-independence, even in the presence of various mutagens. A relationship between the nature of arginine auxotrophy and habitat is suggested.  相似文献   

13.
The cationic groups of arginine and lysine residues in-neurotoxin, Toxin a, isolated from king cobra (Ophiophagus hannah) venom were subjected to modification with trinitrobenzene sulfonate (TNBS) andp-hydroxyphenylglyoxal (HPG), respectively. The trinitrophenylated (TNP) derivatives of Toxin a at Lys-10, 56, or 71 showed approximately 25% residual lethality, and modifications on Lys-10 and 56 or Lys-10 and 50 resulted in a decrease of lethality by 84% and 86%, respectively. Modifications on Arg-34, 37, and 70 and Arg-34, 37, and 72 in Toxin a caused a decrease in lethality by 92% and 93%, respectively, and it almost completely lost its lethality and binding activity to nicotinic acetylcholine receptor (nAChR) when all four arginine residues were modified. These results indicate that in addition to the cationic residues on loop II (Arg-34, 37), loop III (Lys-50, 56), and the C-terminal tail (Arg-70, 72; Lys-71), Lys-10 on loop I is also related to the neurotoxicity of Toxin a.  相似文献   

14.
Seventeen arginine auxotrophic mutants of Sinorhizobium meliloti Rmd201 were isolated by random transposon Tn5 mutagenesis using Tn5 delivery vector pGS9. Based on intermediate feeding studies, these mutants were designated as argA/argB/argC/argD/argE (ornithine auxotrophs), argF/argI, argG and argH mutants. The ornithine auxotrophs induced ineffective nodules whereas all other arginine auxotrophs induced fully effective nodules on alfalfa plants. In comparison to the parental strain induced nodule, only a few nodule cells infected with rhizobia were seen in the nitrogen fixation zone of the nodule induced by the ornithine auxotroph. TEM studies showed that the bacteroids in the nitrogen fixation zone of ornithine auxotroph induced nodule were mostly spherical or oval unlike the elongated bacteroids in the nitrogen fixation zone of the parental strain induced nodule. These results indicate that ornithine or an intermediate of ornithine biosynthesis, or a chemical factor derived from one of these compounds is required for the normal development of nitrogen fixation zone and transformation of rhizobial bacteria into bacteroids during symbiosis of S. meliloti with alfalfa plants.  相似文献   

15.
16.
Cu,Zn superoxide dismutase from baker's yeast, Saccharomyces cerevisiae, can be >98% inactivated by modification of one arginyl residue per subunit with phenylglyoxal. The loss of activity is not accompanied by loss of either Cu or Zn ions, suggesting that this arginine is essential for catalytic activity. 4-Hydroxy-3-nitrophenylglyoxal (HNPG), a chromophoric analogue of phenylglyoxal, also inactivates the yeast enzyme by modification of 1.0 arginine per subunit. The chromophoric properties of HNPG were utilized to identify Arg-143 as the essential arginine in yeast Cu,Zn superoxide dismutase.  相似文献   

17.
Of the 6 single-base mutations that would be predicted to change the missense mutation hisG46 away from a proline codon in the Salmonella/microsome mutagen selection assay for histidine-independent revertants, only 5 have been observed. We have used site-specific mutagenesis to make the unobserved mutant [CCC (proline)----CGC (arginine)] codon in the Salmonella genome. Experiments with this arginine mutant demonstrate that, like bacteria containing the hisG46 mutation, bacteria with the arginine missense mutation are histidine auxotrophs which are capable of reversion to histidine independence. However, unlike the ATP phosphoribosyltransferase coded by the hisG46 his G gene (with a proline), the arginine mutant enzyme is partially active. This is indicated by a histidine-independent phenotype when the arginine hisG gene is present in multiple copies.  相似文献   

18.
19.
In a model proposed for the structure of the a-subunit of the Escherichia coli F0F1-ATPase (Howitt, S.M., Gibson, F. and Cox, G.B. (1988) Biochim. Biophys. Acta 936, 74-80), a cluster of charged residues, including one arginine and four aspartic acid residues, lie on the periplasmic side of the membrane. On the cytoplasmic side, three pairs of lysine residues and an arginine residue are present. Site-directed mutagenesis was used to investigate the roles of these residues. It was found that none was directly involved in the proton pore. However, the substitutions of Asp-124 or Asp-44 by asparagine or Arg-140 by glutamine had similar effects in that the membranes from such mutants from which the F1-ATPase was removed were proton-impermeable. A combination of the Asp-44 mutation with either the Asp-124 or Arg-140 mutations in the same strain resulted in complete loss of oxidative phosphorylation. It was tentatively concluded that Asp-124 and Arg-140 form a salt bridge, as did Asp-44 with an unknown residue, and these salt bridges were concerned with the maintenance of correct a-subunit structure. Further support for this conclusion was obtained when second site revertants of a Glu-219 to histidine mutant were found to have either histidine or leucine replacing Arg-140. Thus, the lack of the Asp-124/Arg-140 salt bridge might enable repositioning of the helices of the a-subunit such that His-219 becomes a functional component of the proton pore.  相似文献   

20.
We reported that phosphorylation by either cAMP-dependent protein kinase or protein kinase C (Ca2+/phospholipid-dependent enzyme) in vitro induces disassembly of the desmin filaments (Inagaki, M., Gonda, Y., Matsuyama, M., Nishizawa, K., Nishi, Y., and Sato, C. (1988) J. Biol. Chem. 263, 5970-5978). For this subunit protein, Ser-29, Ser-35, and Ser-50 within the non-alpha-helical head domain were shown to be the sites of phosphorylation for cAMP-dependent protein kinase (Geisler, N., and Weber, K. (1988) EMBO J. 7, 15-20). In the present work, we identified the sites of desmin phosphorylated in vitro by other protein kinase which affects the filament structure. The protein kinase C-phosphorylated desmin was hydrolyzed with trypsin, and the phosphorylated peptides were isolated by reverse-phase chromatography. Sequential analysis of the purified phosphopeptides, together with the known primary sequence, revealed that Ser-12, Ser-29, Ser-38, and Ser-56 were phosphorylated by protein kinase C. All four sites are located within the non-alpha-helical head domain of desmin. Ser-12, Ser-38, and Ser-56, specifically phosphorylated by protein kinase C, have arginine residues at the carboxyl-terminal side (Arg-14, Arg-42, and Arg-59, respectively). Ser-29 phosphorylated by both protein kinase C and cAMP-dependent protein kinase has arginine residues at the amino and carboxyl termini (Arg-27 and Arg-33). These findings support the view that the head domain-specific phosphorylation strongly influences desmin filament structure; however, each protein kinase differed with regard to site recognition on this domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号