首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of potassium triiodide (KI(3)) formation during fungal laccase action was investigated in presence of methyl syringate (MS). The recombinant forms of Polyporus pinsitus (rPpL), Myceliophthora thermophila (rMtL), Coprinus cinereus (rCcL), and Rhizoctonia solani (rRsL) laccases were used. The triiodide formation rate reached 6.1, 5.5, 6.0, and 2.1 microM/min at saturated rPpL, rCcL, rRsL, and rMtL concentration, respectively, in acetate buffer solution pH 5.5 and in presence of 10 microM of MS and 1 mM of potassium iodide. The triiodide formation rate increased if pH decreased from 6.5 to 4.5. The scheme of laccase-catalysed iodide oxidation includes stadium of MS interaction with oxidized laccase with concomitant production of MS(ox). The reaction of MS(ox) with iodide produced triiodide. The turnover number of MS was 93 and 44 at pH 5.5 for rPpL and rMtL, respectively. The scheme also contained a stadium of reversible reduction of laccase active centre with the mediator explaining the different saturation rate of triiodide production. The fitting kinetic data revealed that the reversibility of the reaction increased for laccases containing lower redox potential of copper type I.  相似文献   

2.
Laccase-catalyzed oxidation of N-substituted phenothiazines and N-substituted phenoxazines was investigated at pH 5.5 and 25°C. The recombinant laccase from Polyporus pinsitus (rPpL) and the laccase from Myceliophthora thermophila (rMtL) were used. The dependence of initial reaction rate on substrate concentration was analyzed by applying the laccase action scheme in which the laccase native intermediate (NI) reacts with a substrate forming reduced enzyme. The reduced laccase produces peroxide intermediate (PI) which in turn decays to the NI. The calculated constant (kox) values of the PI formation are (6.1±3.1)×105 M−1s−1 for rPpL and (2.5±0.9)×104 M−1s−1 for rMtL. The bimolecular constants of the reaction of the native intermediate with electron donor (kred) vary in the interval from 2.2×105 to 2.1×107 M−1s−1 for rPpL and from 1.3×102 to 1.8×105 M-1s−1 for rMtL. The larger reactivity of rPpL in comparison to rMtL is associated with the higher redox potential of type I Cu of rPpL. The variation of kred values for both laccases correlates with the change of the redox potential of substrates. Following outer sphere (Marcus) electron transfer mechanism the calculated activationless electron transfer rate and the apparent reorganization energy are 5.0×107 M−1s−1 and 0.29 eV, respectively.  相似文献   

3.
The lyophilized biomass of White rot fungi (Phanerochaete chrysosporium ME446) was immobilized in gelatine using glutaraldehyde crosslinking agent on a Pt working electrode. The fungal cells retained their laccase activity under entrapped state. The immobilized cells were used as a source of laccase to develop amperometric epinephrine biosensor. The catalytic action of the laccase in the biosensor released an epinephrinequinone as a result of redox activity, thereby causing an increase in the current. The optimal working conditions of the biosensor were carried out at pH 4.5 (50 mM acetate buffer containing 100 mM K(3)Fe(CN)(6)), and 20°C. The sensor response was linear over a range of 5-100 μM epinephrine. The detection limit of the biosensor was found to be 1.04 μM. In the optimization and characterization studies of the microbial biosensor some parameters such as effect of fungi and gelatine amount, percentage of glutaraldehyde on the biosensor response and substrate specificity were carried out. In the application studies of the biosensor, sensitive determination of epinephrine in pharmaceutical ampules was investigated.  相似文献   

4.
The oxidation of TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl radical) has been studied in the presence of recombinant laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) from Polyporus pinsitus (rPpL), Myceliophthora thermophila (rMtL), Coprinus cinereus (rCcL) and Rhizoctonia solani (rRsL) in buffer solution pH 4.5–7.3 and at 25 °C. At pH 5.5 the oxidation constant calculated from the initial rate of TEMPO oxidation was 1.7 × 104, 1.4 × 103, 7.8 × 102 and 5.2 × 102 M−1 s−1 for rPpL, rRsL, rCcL and rMtL, respectively. The maximal activity of rPpL-catalysed TEMPO oxidation was at pH 5.0. The pKa obtained in neutral pH range was 6.2. The reactivity of laccases is in a good agreement with laccases copper type I redox potential.

TEMPO oxidation rate increased 541 times in the presence of 10-(3-propylsulfonate) phenoxazine (PSPX). The model of synergistic TEMPO and PSPX oxidation was proposed. Experimentally obtained rate constants for rPpL-catalysed PSPX oxidation were in a good agreement with those calculated from the synergistic model, therefore confirming the feasibility of the model. The acceleration of TEMPO oxidation with high reactive laccase substrates opens new possibilities for TEMPO application as a mediator.  相似文献   


5.
A feasible and sensitive biosensor for catechol and its derivatives using 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC)-modified glassy carbon electrode was successfully constructed by polyvinyl alcohol-modified SiO? sol-gel method. The as-prepared biosensor was characterized by electrochemical impedance spectroscopy, and the surface topography of the film was imaged by atomic force microscope. Liquid chromatography-tandem mass spectrometry was applied to reveal the catalytic mechanism. BphC embedded in SiO? gel maintained its bioactivity well and exhibited excellent eletrocatalytical response to both catechol and some of its derivatives (such as 3-methylcatechol and 4-methylcatechol). The biosensor showed a linear amperometric response range between 0.002 mM and 0.8 mM catechol. And the sensitivity was 1.268 mA/(mM cm2) with a detection limit of 0.428 μM for catechol (S/N = 3). Furthermore, the BphC biosensor exhibited perfect selectivity for catechol in the mixtures of catechol and phenol. It was suggested that this flexible protocol would open up a new avenue for designing other ring-cleavage enzyme biosensors, which could be widely used for monitoring various kinds of environmental pollutants.  相似文献   

6.
Microband biosensors, screen-printed from a water-based carbon ink containing cobalt phthalocyanine redox mediator and glucose oxidase (GOD) enzyme, were used to monitor glucose levels continuously in buffer and culture medium. Five biosensors were operated amperometrically (E(app) of +0.4V), in a 12-well tissue culture plate system at 37°C, using a multipotentiostat. After 24 h, a linear calibration plot was obtained from steady-state current responses for glucose concentrations up to 10 mM (dynamic range 30 mM). Within the linear region, a correlation coefficient (R(2)) of 0.981 was obtained between biosensor and spectrophotometric assays. Over 24 h, an estimated 0.15% (89 nmol) of the starting glucose concentration (24 mM) was consumed by the microbiosensor. The sensitivity of the biosensor response in full culture medium was stable between pHs 7.3 and 8.4. Amperometric responses for HepG2 monolayer cultures decreased with time in inverse proportionality to cell number (for 0 to 10(6) cell/ml), as glucose was being metabolised. HepG2 3D cultures (spheroids) were also shown to metabolise glucose, at a rate which was independent of spheroid age (between 6 and 15 days). Spheroids were used to assay the effect of a typical hepatotoxin, paracetamol. At 1 mM paracetamol, glucose uptake was inhibited by 95% after 6 h in culture; at 500 μM, around 15% inhibition was observed after 16 h. This microband biosensor culture system could form the basis for an in vitro toxicity testing system.  相似文献   

7.
The pH effect of pyrrole electropolymerization in the presence of glucose oxidase (GODx) on the performance and characteristic of galvanostatically fabricated glucose oxidase/polypyrrole (Ppy) biosensor is reported. Preparing the GODx/Ppy biosensors in 0.1 M KCl saline solution with various pH containing 0.05 M pyrrole monomer and 0.5 mg/ml GODx at 382 microA/cm2 current density for 100 mC/cm2 film thickness, both the galvanostatic responses and characteristics of these resulted biosensors were obtained. The results revealed that the galvanostatic glucose biosensor fabricated at neutral pH condition exhibited much higher sensitivity than those fabricated at lower or higher pH conditions, and had a good linearity form zero to 10 mM glucose with the sensitivity of 7 nA/mM. Finally, the long-term stability and the kinetic parameters, Michaelis constant and maximum current, of this biosensor were also reported.  相似文献   

8.
Specific whole cell activity strongly affects sensitivity and detection limit of whole cell-based biosensors. Previously, we developed recombinant Escherichia coli coexpressing periplasmic organophosphorus hydrolase (OPH) and cytosolic chaperone GroEL-GroES (GroEL/ES). In present work, we investigated the effect of culture conditions on whole cell OPH activity. Especially, the whole cell OPH activity was significantly affected by the concentration of tetracycline that is an inducer for chaperone GroEL/ES. When cultured at 20°C for 31 h in M9 medium containing 1 mM IPTG, 50 ng/mL tetracycline, and 500 µM CoCl2, the recombinant E. coli exhibited a specific whole cell OPH activity (U/OD600) of ~0.55, which is 2.6-fold higher than that of recombinant E. coli cultured as previously described conditions. In addition, recombinant cells showed adequate storage stability for 1 week with 100% of original response. Finally, the improved activity and adequate stability in the whole cell biocatalyst will contribute to sensitivity, detection time, and stability of a whole cell-based biosensor for the detection of toxic organophosphates.  相似文献   

9.
A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed in mediator-less condition and also, in the presence of 1 and 5 μM thionine as electron mediator. The linear calibration curve of the concentration of glutamate versus peak current is investigated in a wide range of 0.1-500 μM. The mediator-less biosensor has a low detection limit of 57 nM and two linear ranges of 0.1-20 μM with a sensitivity of 0.976 mA mM(-1) cm(-2) and 20-300 μM with a sensitivity of 0.182 mA mM(-1) cm(-2). In the presence of 1 μM thionine as an electron mediator, the prepared biosensor shows a low detection limit of 68 nM and two linear ranges of 0.1-20 with a calibration sensitivity of 1.17 mA mM(-1) cm(-2) and 20-500 μM with a sensitivity of 0.153 mA mM(-1) cm(-2). The effects of the other biological compounds on the voltammetric behavior of the prepared biosensor and its response stability are investigated. The results are demonstrated that the GLDH/VACNTs electrode even without electron mediator is a suitable basic electrode for detection of glutamate.  相似文献   

10.
A biosensor based on flow injection of the recognition element has been developed. As a model a pH-transducer was used, and urease was chosen as the recognition element. The pH-transducer was immersed in an internal flow-through chamber which was in contact with the sample solution via a semi-permeable membrane. The recognition element, urease, was injected into the buffer solution passing through the biosensor. The enzyme catalysed the hydrolysis of urea and the concomitant increase in pH was recorded. The biosensor response time was about three minutes at a constant flow rate of 0·05 ml/min. The linear range of the calibration curve of the biosensor was 0–5 mM. The observed detection limit was approximately 0.1 mM. The sample throughput was 6–12 per hour. The pH-response of the biosensor, for a sample solution containing urea (3·26 mM), showed a reproducibility (r.s.d) of 28% (n = 5) and a repeatability (r.s.d.) of 8% (n = 5). Operation at elevated temperatures (up to 50°C) was demonstrated. The presence of glucose (28 mM), acetone (6·7 mM), citric acid (0·2 mM) or sodium acetate (0·6 mM) in the sample solution did not interfere with the sensor response. A lowering of the biosensor response which was observed in the presence of copper ions (due to urease inhibition) could be completely eliminated by adding EDTA to the urease solution. Thus, this work demonstrates a new type of biosensors, based on SIRE-technology (Sensors with Injectable Recognition Elements), which show high accuracy and stability, quick response and high sample throughput. These features suggest the suitability of the system for automation. Such sensors should readily be combined with other enzymes or enzyme systems. The enzyme (urease) cost per analysis (injection) for the biosensor was estimated to be approximately US$0·02. This could be substantially reduced by further optimisation and miniaturisation.  相似文献   

11.
Biosensors containing recombinant carbohydrate oxidase from Microdochium nivale (rMnO) were developed by means of either chemically modified carbon paste or graphite electrode. 1-(N,N-dimethylamine)-4-(4-morpholine)benzene (AMB) and 1,1'-dimethylferrocene (DMFc) have been used as mediators. The biosensors showed a linear calibration graph up to 18 mM of glucose when operated at 0.04-0.36 V versus a saturated calomel electrode. Almost no change was detected in the sensitivity of the biosensors at pH 7.2-8.1. The biosensors responded to other aldoses in the D-configuration, however, maximal sensitivity of the biosensor was towards D-glucose. The biosensor did not response to polyhydroxylic compounds such as D-mannitol, D-sorbitol and inositol. The advantages of the biosensors based on rMnO in comparison to Aspergillus niger glucose oxidase is a wider linear range, low sensitivity to oxygen and (in some cases) broad specificity.  相似文献   

12.
On-line microbial biosensing and fingerprinting of water pollutants   总被引:3,自引:0,他引:3  
The potential for biosensors to contribute to on-line toxicity testing for monitoring of water quality is currently constrained both by the relevance of the biosensors available and the technology for biosensor delivery. This paper reports the use of novel slow release biosensor delivery for on-line monitoring instrumentation, with environmentally relevant bacteria for both simple toxicity testing and more complex toxicity fingerprinting of industrial effluents. The on-line toxicity test, using bioluminescence-based biosensors, proved to be as sensitive and reliable as the corresponding batch test, with comparable contaminant EC(50) values from both methods. Toxicity fingerprinting through the investigation of the kinetics (dose-response) and the dynamics (response with time) of the biosensor test response proved to be diagnostic of both effluent type and composition. Furthermore, the slow release of biosensors immobilised in a polyvinyl alcohol (PVA) matrix greatly improved biosensor delivery, did not affect the sensitivity of toxicity testing, and demonstrated great potential for inclusion in on-line monitoring instrumentation.  相似文献   

13.
Naturally bioluminescent fungi, Armillaria mellea and Mycena citricolor, were used to develop a novel, bioluminescence-based bioassay for toxicity testing. Bioassays were carried out to assess the toxicity of 3,5-dichlorophenol (3,5-DCP), pentachlorophenol (PCP), copper and zinc. The results suggested that 60 min was a suitable exposure time for the bioassay. Light reduction was observed in response to 3,5-DCP, PCP and Cu for both A. mellea and M. citricolor, but to Zn only for A. mellea. Armillaria mellea was significantly less sensitive to 3,5-DCP and PCP than M. citricolor. The EC50 values for A. mellea and M. citricolor were similar to EC50 values for 3,5-DCP, PCP and Cu (but not Zn) of bioluminescence-based bacterial biosensors. They were also similar to EC50 values for Cu and Zn of a bioluminescence-based yeast biosensor. The results highlighted the importance of using both prokaryotic and eukaryotic biosensors. The novel bioassay provides a rapid and sensitive method to assess bioavailability of pollutants as well as a method to determine their toxicity to filamentous fungi. It also expands the range of organisms that can be used for bioluminescence-based toxicity testing by complementing existing biosensors.  相似文献   

14.
A new xanthine (X) biosensors based on a hybrid nanocomposite containing multi-walled carbon nanotubes (MWCNT), Pt nanoparticles (PtNP) and gold nanoparticle (AuNP) was presented. X biosensor was fabricated by dropping AuNP/PtNP/MWCNT onto xanthine oxidase (XO) modified glassy carbon paste electrode (GCPE). Resulted XO/AuNP/PtNP/MWCNT/GCPE biosensor showed two linearity between 2.0 and 50 µM and 0.25 and 6.0 mM for X. RSD value was calculated as 2.46 (n = 5). Finally, the biosensor was applied to the X detection in synthetic serum samples and good recovery value was obtained.  相似文献   

15.
Liu Y  Qu X  Guo H  Chen H  Liu B  Dong S 《Biosensors & bioelectronics》2006,21(12):2195-2201
The carbon nanotubes–chitosan (CNTs–CS) composite provides a suitable biosensing matrix due to its good conductivity, high stability, and good biocompatibility. Enzymes can be firmly incorporated into the matrix without the aid of other cross-linking reagents. The composite is easy to form insoluble film in solution above pH 6.3. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the CNTs–CS composite film has been developed. At pH 6.0, the fungi laccase incorporated into the composite film remains better catalytic activity than that dissolved in solution. The system is in favor of the accessibility of substrate to the active site of laccase, thus the affinity to substrates is improved greatly, such as 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), catechol, and O2 with Km values of 19.86 μM, 9.43 μM, and 3.22 mM, respectively. The major advantages of the as-prepared biosensor are: detecting different substrates (ABTS, catechol, and O2), possessing high affinity and sensitivity, durable long-term stability, and facile preparation procedure. On the other hand, the system can be applied in fabrication of biofuel cells as the cathodic catalysts based on its good electrocatalysis for oxygen reduction. It can be extended to immobilize other enzymes and biomolecules, which will greatly facilitate the development of biosensors, biofuel cells, and other bioelectrochemical devices.  相似文献   

16.
A novel amperometric biosensor based on polypyrrole (PPy) nanotube array deposited on a Pt plated nano-porous alumina substrate and its performances are described. Glucose oxidase (GOx) enzyme was selected as the model enzyme in this study. Commercially available nano-porous alumina discs were used to fabricate electrodes in order to study the feasibility of enzyme entrapment by physical adsorption. A PPy/PF6- film comprising of nanotube array was synthesized using a solution containing 0.05 M Pyrrole and 0.1 M NaPF6 at a current density of 0.3 mA/cm2 for 90 s. The immobilization was done by physical adsorption of 5 microL of GOx (from a stock solution of 2 mg/mL of 210 U/mg) on each electrode. A sensitivity of 7.4 mA cm(-2) M(-1) was observed with PPy nanotube array where the maximum tube diameter was 100 nm. A linear range of 500 microM-13 mM and a response time of about 3 s were observed with a nanotube array where the maximum tube diameter was 200 nm. The synthesized nanotube arrays were characterized by galvanostatic electrochemical technique. Calculated value of apparent Michaelis-Menten constant (Km) was 7.01 mM. The use of nano-porous template electrodes leads to an efficient enzyme loading and provides an increased surface area for sensing the reaction. These factors contribute to increase the characteristic performances of the novel biosensor.  相似文献   

17.
An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed.  相似文献   

18.
Tan X  Li M  Cai P  Luo L  Zou X 《Analytical biochemistry》2005,337(1):111-120
A new type of amperometric cholesterol biosensor based on sol-gel chitosan/silica and multiwalled carbon nanotubes (MWCNTs) organic-inorganic hybrid composite material was developed. The hybrid composite film was used to immobilize cholesterol oxidase on the surface of Prussian blue-modified glass carbon electrode. Effects of some experimental variables such as enzyme loading, concentration of Triton X-100, pH, temperature, and applied potential on the current response of the biosensor were investigated. Analytical characteristics and dynamic parameters of the biosensors with and without MWCNTs in the hybrid film were compared, and the results show that analytical performance of the biosensor can be improved greatly after introduction of the MWCNTs. Response time, sensitivity, linear range, limit of detection (S/N=3), and apparent Michaelis-Menten constant Km are 25s, 0.54 microA mM(-1), 8.0 x 10(-6) to 4.5 x 10(-4) M, 4.0 x 10(-6) M, and 0.41 mM for the biosensor without MWCNTs and 13 s, 1.55 microA mM(-1), 4.0 x 10(-6) to 7.0 x 10(-4) M, 1.0 x 10(-6) M, and 0.24 mM for the biosensor with MWCNTs, respectively. The activation energy of the enzyme-catalyzed reaction was measured to be 42.6 kJ mol(-1). This method has been used to determine the free cholesterol concentration in real human blood samples.  相似文献   

19.
A new mediated amperometric biosensor for fructose is described. The sensor is based on a commercially available D-fructose dehydrogenase. The enzyme is incorporated in a carbon paste matrix containing Os(bpy)2Cl2 as redox mediator that achieves electron transfer at 0·1 V (versus Ag/AgCl) with maximum apparent current densities of 1·2 mA/cm2. The dependence of the steady-state current on the loading of the mediator and the enzyme, other electrode construction parameters, the operating potential, the pH and the temperature was studied. In the steady-state mode the response current was directly proportional to D-fructose concentration from 0·2 to 20mM with a detection limit of 35 μM (signal-to-noise ratio, S/N, 3). In the flow injection analysis mode the response current was directly proportional to D-fructose concentration from 0·5 to 15 M with a detection limit of 115 μM (S/N 3). The sensor was used for the determination of fructose in food samples in a flow injection system and validated with a commercial enzyme kit.  相似文献   

20.
Amperometric glucose biosensors utilizing commercially available FAD-dependent glucose dehydrogenases from two strains of Aspergillus species are described. Enzymes were immobilized on nanocomposite electrode consisting of multi-walled carbon nanotubes by entrapment between chitosan layers. Unlike the common glucose oxidase based biosensor, the presented biosensors appeared to be O(2)-independent. The optimal amount of enzymes, working potential and pH value of working media of the glucose biosensors were determined. The biosensor utilizing enzyme isolated from Aspergillus sp. showed linearity over the range from 50 to 960 μM and from 70 to 620 μM for enzyme from Aspergillus oryzae. The detection limits were 4.45 μM and 4.15 μM, respectively. The time of response was found to be 60 s. The biosensors showed excellent operational stability - no loss of sensitivity after 100 consecutive measurements and after the storage for 4 weeks at 4 °C in phosphate buffer solution. When biosensors were held in a dessicator at room temperature without use, they kept the same response ability at least after 6 months. Finally, the results obtained from measurements of beverages and wine samples were compared with those obtained with the enzymatic-spectrophotometric and standard HPLC methods, respectively. Good correlation between results in case of analysis of real samples and good analytical performance of presented glucose biosensor allows to use presented concept for mass production and commercial use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号