首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designatedART3andART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32–41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and byin situhybridization, we have mapped the two genes to human chromosomes 4p14–p15.1 and 12q13.2–q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the “tip of an iceberg,” i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation.  相似文献   

2.
To get high level secretion of human lysozyme in Pichia pastoris, the following three signal sequences and one prepro sequence were evaluated: chicken lysozyme signal peptide, leucine-rich artificial signal peptide, Saccharomyces invertase signal peptide, and Saccharomyces prepro sequence of alpha factor (MF-alpha Prepro). Transformants harboring a lysozyme gene with MF-alpha Prepro secreted 20-fold more lysozyme than those harboring the lysozyme gene with any one of the other three signal sequences. Three mutant leader sequences derived from MF-alpha Prepro were constructed to discover the function of the pro region. The secretion was dramatically decreased by eliminating the pro region of MF-alpha Prepro. In contrast, MF-alpha Prepro with the EAEAEA sequence directed the secretion of an equivalent level of lysozyme having the extra amino acids (EAEAEA) in its N-terminus. For the effective secretion of native human lysozyme, MF-alpha Prepro without any spacer sequences was most suitable. The secreted protein by MF-alpha Prepro construct was identical with the authentic human lysozyme, judging from N-terminal amino acid sequencing and molecular mass spectrometric and crystallographic analysis.  相似文献   

3.
This study reports the isolation and characterization of the entire proopiomelanocortin (POMC) gene of the amphibian Xenopus laevis. The Xenopus POMC gene consists of three exons of which the main exon 3 codes for all of the bioactive domains of the precursor protein. Intron A (2.6 kb) separates the segments encoding the 5'-untranslated mRNA region and intron B (2.5 kb) interrupts the protein-coding sequence near the signal peptide coding region. In that this structural organization of the Xenopus POMC gene is similar to those of the mammalian genes, apparently the POMC gene has been remarkably stable during 350 million years of vertebrate evolution. A comparative analysis of the 5'-flanking sequences of the Xenopus and mammalian POMC genes reveals the presence of several conserved regions. One of these regions is homologous with sequences located upstream of the capping sites of other glucocorticoid-regulated genes and another region contains a segment reminiscent of a viral enhancer consensus sequence.  相似文献   

4.
The rat alpha- and bovine alpha s1-casein genes have been isolated and their 5' sequences determined. The rat alpha-, beta-, gamma- and bovine alpha s1-casein genes contain similar 5' exon arrangements in which the 5' noncoding, signal peptide and casein kinase phosphorylation sequences are each encoded by separate exons. These findings support the hypothesis that during evolution, the family of casein genes arose by a process involving exon recruitment followed by intragenic and intergenic duplication of a primordial gene. Several highly conserved regions in the first 200 base pairs of the 5' flanking DNA have been identified. Additional sequence homology extending up to 550 base pairs upstream of the CAP site has been found between the rat alpha- and bovine alpha s1-casein sequences. Unexpectedly, the 5' flanking promoter regions are conserved to a greater extent than both the entire mature coding and intron regions of these genes. These conserved 5' flanking sequences may contain potential cis regulatory elements which are responsible for the coordinate expression of the functionally-related casein genes during mammary gland development.  相似文献   

5.
6.
7.
The vertebrate proglucagon gene encodes three glucagon-like sequences (glucagon, glucagon-like peptide-1 [GLP-1], and glucagon-like peptide 2 [GLP-2]) that have distinct functions in regulating metabolism in mammals. In contrast, glucagon and GLP-1 have similar physiological actions in fish, that of mammalian glucagon. We have identified sequences similar to receptors for proglucagon-derived peptides from the genomes of two fish (pufferfish and zebrafish), a frog (Xenopus tropicalis), and a bird (chicken). Phylogenetic analysis of the receptor sequences suggested an explanation for the divergent function of GLP-1 in fish and mammals. The phylogeny of our predicted and characterized receptors for proglucagon-derived peptides demonstrate that receptors for glucagon, GLP-1, and GLP-2 have an origin before the divergence of fish and mammals; however, fish have lost the gene encoding the GLP-1 class of receptors, and likely the incretin action of GLP-1. Receptors that bind GLP-1, but yield glucagon-like action, have been characterized in goldfish and zebrafish, and these sequences are most closely related to glucagon receptors. Both pufferfish and zebrafish have a second glucagon receptor-like gene that is most closely related to the characterized goldfish glucagon receptor. The phylogeny of glucagon receptor-like genes in fish indicates that a duplication of the glucagon receptor gene occurred on the ancestral fish lineage, and could explain the shared action of glucagon and GLP-1. We suggest that the binding specificity of one of the duplicated glucagon receptors has diverged, yielding receptors for GLP-1 and glucagon, but that ancestral downstream signaling has been maintained, resulting in both receptors retaining glucagon-stimulated downstream effects.  相似文献   

8.
Cytoglobin is a recently discovered myoglobin-related O2-binding protein of vertebrates with uncertain function. It occurs as single-copy gene in mammals. Here, we demonstrate the presence of two paralogous cytoglobin genes (Cygb-1 and Cygb-2) in the teleost fishes Danio rerio, Oryzias latipes, Tetraodon nigroviridis, and Takifugu rubripes. The globin-typical introns at positions B12.2 and G7.0 are conserved in both genes, whereas the C-terminal exon found in mammalian cytoglobin is absent in the fish genes. Phylogenetic analyses show that the two cytoglobin genes diverged early in teleost evolution. This is confirmed by gene synteny analyses, which suggest a large-scale duplication event. Although both cytoglobin genes are highly conserved and have evolved under purifying selection, substitution rates are significantly higher in Cygb-1 than in Cygb-2. Similar to their mammalian ortholog, both fish cytoglobins are expressed in a broad range of tissues. However, Cygb-2 is more than 250-fold stronger expressed in neuronal tissues, suggesting a subfunctionalization of the two cytoglobin paralogs after gene duplication.  相似文献   

9.
The interferon system of teleost fish   总被引:4,自引:0,他引:4  
Interferons (IFNs) are secreted proteins, which induce vertebrate cells into an antiviral state. In mammals, three families of IFNs (type I IFN, type II IFN and IFN-lambda) can be distinguished on the basis of gene structure, protein structure and functional properties. Type I IFNs, which include IFN-alpha and IFN-beta, are encoded by intron lacking genes and have a major role in the first line of defense against viruses. The human IFN-lambdas have similar biological properties as type I IFNs, but are encoded by intron containing genes. Type II IFN is identical to IFN-gamma, which is produced by T helper 1 cells in response to mitogens and antigens and has a key role in adaptive cell mediated immunity. IFNs, which show structural and functional properties similar to mammalian type I IFNs, have recently been cloned from Atlantic salmon, channel catfish, pufferfish, and zebrafish. Teleost fish appear to have at least two type I IFN genes. Phylogenetic sequence analysis shows that the fish type I IFNs form a group separated from the avian type I IFNs and the mammalian IFN-alpha, -beta and -lambda groups. Interestingly, the fish IFNs possess the same exon/intron structure as the IFN-lambdas, but show most sequence similarity to IFN-alpha. Recently, IFN-gamma genes have also been cloned from several fish species and shown to have the same exon/intron structure as mammalian IFN-gamma genes. The antiviral effect of mammalian type I IFN is exerted through binding to the IFN-alpha/beta-receptor, which triggers signal transduction through the JAK-STAT signal transduction pathway resulting in expression of Mx and other antiviral proteins. Putative IFN receptor genes have been identified in pufferfish. Several interferon regulatory factors and members of the JAK-STAT pathway have also been identified in various fish species. Moreover, Mx and several other interferon stimulated genes have been cloned and studied in fish. Furthermore, antiviral activity of Mx protein from Atlantic salmon and Japanese flounder has recently been demonstrated.  相似文献   

10.
11.
Vascular endothelial growth factor (VEGF-A) is a key angiogenic growth factor which regulates vertebrate embryonic vascularization, adult physiology such as wound healing and reproduction as well as many human diseases. To understand the evolution and regulation of this gene in vertebrates, we have isolated and characterized the zebrafish vegf-A gene and compared it with VEGF-A genes of human, mouse as well as an in silico isolated VEGF-A homologue from pufferfish. Our results indicate that the zebrafish vegf-A gene is organized similarly to mammalian and Fugu VEGF-A genes, with eight exons interrupted by seven introns. However, zebrafish vegf-A introns are generally larger than mammalian introns while Fugu VEGF-A introns are much smaller. Furthermore, zebrafish exon 6 (z6) has a unique sequence while Fugu's exon 6 is highly homologous to the mammalian counterparts. Alternative splicing generates multiple vegf-A mRNA isoforms in zebrafish with Vegf(121) as the dominant isoform in adult and Vegf(165) as the dominant isoform in early embryos. The exon z6 containing isoform Vegf(12345z678) is only detected in heart, muscle, and early embryos while another isoform Vegf-A(1234577)(a)(8) is only detected in heart. Furthermore, no conserved 5' flanking sequences between zebrafish and Fugu were observed while numerous conserved regions exist between human and mouse in this area. These results suggest both conserved and diverged functions of VEGF-A from fish to mammals since the separation of these two groups from their common ancestor about 450 million years ago and a diverged regulation of this gene since the separation of zebrafish from Fugu. These data will be valuable for future studies of VEGF-A gene regulation and function in different vertebrates.  相似文献   

12.
Wnt-signalling is involved in a number of biological processes in the course of embryonic development, cell fate determination, proliferation, stem cell maintenance and oncogenesis. Wnt ligands are secreted glycoproteins and the number of Wnt isoforms varies between five in nematodes and 27 in fish. The highly conserved group of Wnt7 genes has been found to signal via at least three Wnt-signalling pathways dependent on the developmental context. These ligands have been identified as important regulators in a number of processes ranging from formation of bones, lungs, kidneys, reproductive organs and placenta to vasculogenesis and synaptogenesis in the brain. The importance of Wnt7 function is underscored by their implication in disease syndromes in man. Unlike the single Wnt7a and Wnt7b mammalian genes we find that the zebrafish genome contains two paralogues genes for each Wnt7 ligand. Here, we compare these four Wnt7 genes evolutionarily and analyse their expression during the first two days of embryonic development. We find Wnt7 genes mainly expressed in a number of CNS structures at developmental stages at which patterning and neural specification takes place. The timely and spatially overlapping as well as complementary gene expression suggests diverse as well as redundant involvements during brain development.  相似文献   

13.
Expression systems of human and silkworm lysozymes were constructed using the methylotrophic yeast Pichia pastoris as a host. The leader sequence and its prepro peptide of alpha-factor (a peptide pheromone derived from yeast) and the native signal sequences of these lysozymes, were used as secretion signals. When the alpha-factor leader is used as the signal sequence, human lysozyme is secreted at a much higher level than is silkworm lysozyme. On the other hand, silkworm lysozyme, when its native signal is used, is secreted more efficiently than human lysozyme. Therefore, we expected that human lysozyme cDNA with a silkworm native signal would be secreted more efficiently than human lysozyme with its native signal. However, its level of expression was not increased. This result indicates that the native signal of silkworm lysozyme does not promote the secretion of the lysozyme, but rather alpha-factor leader inhibits the secretion. Silkworm lysozyme with the alpha-factor leader is so unstable that it could be easily attacked by some proteases and our findings suggest that the level of expression of heterologous protein with signal peptides and its stability are greatly affected by the selection of the appropriate secretion signal sequence.  相似文献   

14.
Eight overlapping phage clones, spanning 34.4 kilobase pairs of genomic DNA, containing the 7.2-kilobase pair rat beta-casein gene have been isolated and characterized. The first 510 base pairs (bp) of 5' flanking, 110 bp of 3' flanking, and all the exon/intron junctions have been sequenced. The beta-casein gene contains 9 exons ranging in size from 21 to 525 bp. We have attempted to identify potential regulatory elements by searching for regions of sequence homology shared between milk protein genes which respond similarly to lactogenic hormones and by searching for previously reported hormone receptor-binding sites. Within the conserved first 200 bp of 5' flanking sequences 3 regions of greater than 70% homology were observed between the rat beta- and gamma-casein genes. One of these contains a region 90% homologous to the chicken progesterone receptor-binding site. The conserved 5' noncoding region, the highly conserved signal peptide, and the hydrophobic carboxyl-terminal region of the protein are each encoded by a separate exon. In contrast the evolutionarily conserved phosphorylation site of beta-casein is formed by an RNA-splicing event. The exons which encode the phosphorylation sites of beta-casein appear to have resulted from an intragenic duplication. Based upon the exon structure of the casein genes, an evolutionary model of intragenic and intergenic exon duplications for this gene family is proposed.  相似文献   

15.
16.
17.
秀丽小杆线虫分泌蛋白组的计算机分析   总被引:2,自引:0,他引:2  
吴红芝  李成云  朱有勇  毕玉芬 《遗传》2006,28(4):470-478
结合计算机技术和生物信息学的方法,采用组合的信号肽分析软件SignalP v3.0、TargetP v1.01、Big-PI Predictor和TMHMM v2.0,预测了秀丽小杆线虫(Caenorthaditis elegans ws123)的全基因组19855个ORF编码蛋白的信号肽,同时系统分析了信号肽的特征。结果表明,在19855个秀丽小杆线虫的蛋白中,有1990条为带有信号肽的分泌型蛋白,其中,1936条为典型的分泌型信号肽(即信号肽酶Ⅰ型信号肽),53条为信号肽酶Ⅱ型信号肽,1条为信号肽酶Ⅳ型信号肽;在Ⅰ型信号肽中,有41条为RR-motif亚组型信号肽。在1990条信号肽中,有742条没有典型的N-区,其余1248条包含典型的3个区。比较了秀丽小杆线虫与原核生物分泌蛋白信号肽中20种氨基酸残基在信号肽酶切位点的使用情况,表明:在Ⅰ型信号肽酶切位点,其信号肽中使用的氨基酸总体趋势与原核生物基本相似,但秀丽小杆线虫选用的氨基酸种类更多,变化更大;在Ⅱ型信号肽酶切位点,秀丽小杆线虫脂蛋白信号肽中使用的氨基酸的种类与原核生物有很大的不同。通过与真核单细胞生物比较,作为真核多细胞生物的秀丽小杆线虫,其分泌蛋白信号肽所占比例更高、种类更多,可知线虫信号肽的组成具有很高的多态性,表明该物种的分泌蛋白具有多种功能。此外,分析结果显示,脂蛋白信号肽在结构上比分泌型信号肽更为保守。在秀丽小杆线虫分泌蛋白中出现了少数氨基酸组成完全一致的信号肽,采用BLAST 2 SEQUENECES对具有相同信号肽的分泌蛋白进行了序列比对,结果表明具有相同信号肽的分泌蛋白同源性非常高,它们的存在是生物进化过程中基因倍加(duplication)及环境选择的结果,信号肽特征的详细描述必将对这些蛋白功能的研究提供重要的帮助。   相似文献   

18.
All jawed vertebrates possess a complex immune system, which is capable of anticipatory and innate immune responses. Jawless vertebrates posses an equally complex immune system but with no evidence of an anticipatory immune response. From these findings it has been speculated that the initiation and regulation of the immune system within vertebrates will be equally complex, although very little has been done to look at the evolution of cytokine genes, despite well-known biological activities within vertebrates. In recent years, cytokines, which have been well characterised within mammals, have begun to be cloned and sequenced within non-mammalian vertebrates, with the number of cytokine sequences available from primitive vertebrates growing rapidly. The identification of cytokines, which are mammalian homologues, will give a better insight into where immune system communicators arose and may also reveal molecules, which are unique to certain organisms. Work has focussed on interleukin-1 (IL-1), a major mediator of inflammation which initiates and/or increases a wide variety of non-structural, function associated genes that are characteristically expressed during inflammation. Other than mammalian IL-1β sequences there are now full cDNA sequences and genomic organisations available from bird, amphibian, bony fish and cartilaginous fish, with many of these genes having been obtained using an homology cloning approach. This review considers how the IL-1β gene has changed through vertebrate evolution and whether its role and regulation are conserved within selected non-mammalian vertebrates.  相似文献   

19.
The glucose-dependent insulinotropic polypeptide (GIP) gene is believed to have originated from a gene duplication event very early in vertebrate evolution that also produced the proglucagon gene, yet so far GIP has only been described within mammals. Here we report the identification of GIP genes in chicken, frogs, and zebrafish. The chicken and frog genes are organized in a similar fashion to mammalian GIP genes and contain 6 exons and 5 introns in homologous locations. These genes can also potentially be proteolytically processed in identical patterns as observed in the mammalian sequences that would yield a GIP hormone that is only one amino shorter than the mammalian sequences due to the removal of an extra basic residue by carboxypeptidase E. The zebrafish GIP gene and precursor protein is shorter than other vertebrate GIP genes and is missing exon 5. The predicted zebrafish GIP hormone is also shorter, being only 31 amino acids in length. The zebrafish GIP hormone is similar in length to the proglucagon-derived peptide hormones, peptides encoded from the gene most closely related to GIP. We suggest that the structure of zebrafish GIP is more similar to the ancestral gene, and that tetrapod GIP has been extended. The mammalian GIP hormone has also undergone a period of rapid sequence evolution early in mammalian evolution. The discovery of a conserved GIP in diverse vertebrate suggests that it has an essential role in physiology in diverse vertebrates, although it may have only recently evolved a role as an incretin hormone.  相似文献   

20.
Evidence is presented for a family of mammalian homologs of ependymin, which we have termed the mammalian ependymin-related proteins (MERPs). Ependymins are secreted glycoproteins that form the major component of the cerebrospinal fluid in many teleost fish. We have cloned the entire coding region of human MERP-1 and mapped the gene to chromosome 7p14.1 by fluorescence in situ hybridization. In addition, three human MERP pseudogenes were identified on chromosomes 8, 16, and X. We have also cloned the mouse MERP-1 homolog and an additional family member, mouse MERP-2. Then, using bioinformatics, the mouse MERP-2 gene was localized to chromosome 13, and we identified the monkey MERP-1 homolog and frog ependymin-related protein (ERP). Despite relatively low amino acid sequence conservation between piscine ependymins, toad ERP, and MERPs, several amino acids (including four key cysteine residues) are strictly conserved, and the hydropathy profiles are remarkably alike, suggesting the possibilities of similar protein conformation and function. As with fish ependymins, frog ERP and MERPs contain a signal peptide typical of secreted proteins. The MERPs were found to be expressed at high levels in several hematopoietic cell lines and in nonhematopoietic tissues such as brain, heart, and skeletal muscle, as well as several malignant tissues and malignant cell lines. These findings suggest that MERPs have several potential roles in a range of cells and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号