首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new activator for the coupling of phosphoramidites to the 5'-hydroxyl group during oligonucleotide synthesis is introduced. The observed time to complete coupling is twice as fast with 4, 5-dicyanoimidazole (DCI) as the activator, compared with 1 H -tetrazole. The effectiveness of DCI is thought to be based on its nucleophilicity. DCI is soluble in acetonitrile up to 1.1 M at room temperature and can be used as the sole coupling activator during routine automated solid phase synthesis of oligonucleotides. The addition of 0.1 M N -methylimidazole to 0.45 M 1 H -tetrazole also results in higher product yields during oligonucleotide synthesis than observed with 1 H -tetrazole alone.  相似文献   

2.
Pon RT  Yu S 《Nucleic acids research》2005,33(6):1940-1948
Multiple oligonucleotides of the same or different sequence, linked end-to-end in tandem can be synthesized in a single automated synthesis. A linker phosphoramidite [R. T. Pon and S. Yu (2004) Nucleic Acids Res., 32, 623–631] is added to the 5′-terminal OH end of a support-bound oligonucleotide to introduce a cleavable linkage (succinic acid plus sulfonyldiethanol) and the 3′-terminal base of the new sequence. Conventional phosphoramidites are then used for the rest of the sequence. After synthesis, treatment with ammonium hydroxide releases the oligonucleotides from the support and cleaves the linkages between each sequence. Mixtures of one oligonucleotide with both 5′- and 3′-terminal OH ends and other oligonucleotides with 5′-phosphorylated and 3′-OH ends are produced, which are deprotected and worked up as a single product. Tandem synthesis can be used to make pairs of PCR primers, sets of cooperative oligonucleotides or multiple copies of the same sequence. When tandem synthesis is used to make two self-complementary sequences, double-stranded structures spontaneously form after deprotection. Tandem synthesis of oligonucleotide chains containing up to six consecutive 20mer (120 bases total), various trinucleotide codons and primer pairs for PCR, or self-complementary strands for in situ formation of double-stranded DNA fragments has been demonstrated.  相似文献   

3.
A new method to produce a set of 20 high quality trinucleotide phosphoramidites on a 5-10 g scale each was developed. The procedure starts with condensation reactions of P-components with N-acyl nucleosides, bearing the 3 '-hydroxyl function protected with 2-azidomethylbenzoyl, to give fully protected dinucleoside phosphates 13. Upon cleavage of dimethoxytrityl group from 13, dinucleoside phosphates 16 are initially transformed into trinucleoside diphosphates 19 and then the 2-azidomethylbenzoyl is selectively removed under neutral conditions to generate trinucleoside diphosphates 5 in excellent yield. Subsequent 3 '-phosphitylation affords target trinucleotide phosphoramidites 7. When mutagenic oligonucleotides are synthesized employing mixtures of building blocks 7 as well as following the new synthetic protocol, representative oligonucleotide libraries are generated in good yields.  相似文献   

4.
A variety of furan-modified nucleoside phosphoramidite monomers has been prepared and efficiently incorporated into oligonucleotides. These take part in Diels-Alder reactions with fluorescent maleimides to give fluorescent-labeled oligonucleotides. This represents a strategy for oligonucleotide labeling that is orthogonal to amine-based methods.  相似文献   

5.
An improved method for the enzymatic synthesis of purine nucleosides is described. Pyrimidine nucleosides were used as pentosyl donors and two phosphorylases were used as catalysts. One of the enzymes, either uridine phosphorylase (Urd Pase) or thymidine phosphorylase (dThd Pase), catalyzed the phosphorolysis of the pentosyl donor. The other enzyme, purine nucleoside phosphorylase (PN Pase), catalyzed the synthesis of the product nucleoside by utilizing the pentose 1-phosphate ester generated from the phosphorolysis of the pyrimidine nucleoside. Urd Pase, dThd Pase, and PN Pase were separated from each other in extracts of Escherichia coli by titration with calcium phosphate gel. Each enzyme was further purified by ion-exchange chromatography. Factors that affect the stability of these catalysts were studied. The pH optima for the stability of Urd Pase, dThd Pase, and PN Pase were 7.6, 6.5, and 7.4, respectively. The order of relative heat stability was Urd Pase greater than PN Pase greater than dThd Pase. The stability of each enzyme increased with increasing enzyme concentration. This dependence was strongest with dThd Pase and weakest with Urd Pase. Of the substrates tested, the most potent stabilizers of Urd Pase, dThd Pase, and PN Pase were uridine, 2'-deoxyribose 1-phosphate, and ribose 1-phosphate, respectively. Some general guidelines for optimization of yields are given. In a model reaction, optimal product formation was obtained at low phosphate concentrations. As examples of the efficiency of the method, the 2'-deoxyribonucleoside of 6-(dimethylamino)purine and the ribonucleoside of 2-amino-6-chloropurine were prepared in yields of 81 and 76%, respectively.  相似文献   

6.
Oligonucleotide analogues comprised of 2'-deoxy-2'-fluoro-beta-D-arabinose units joined via P3'-N5' phosphoramidate linkages (2'F-ANA(5'N)) were prepared for the first time. Among the compounds prepared were a series of 2'OMe-RNA-[GAP]-2'OMe-RNA 'chimeras', whereby the "GAP" consisted of DNA, DNA(5'N), 2'F-ANA or 2'F-ANA(5'N) segments. The chimeras with the 2'F-ANA and DNA gaps exhibited the highest affinity towards a complementary RNA target, followed by the 5'-amino derivatives, i.e., 2'F-ANA > DNA > 2'F-ANA(5'N) > DNA(5'N). Importantly, hybrids between these chimeras and target RNA were all substrates of both human RNase HII and E. coli RNase HI. In terms of efficiency of the chimera in recruiting the bacterial enzyme, the following order was observed: gap DNA > 2'F-ANA > 2'F-ANA(5'N) > DNA(5'N). The corresponding relative rates observed with the human enzyme were: gap DNA > 2'F-ANA(5'N) > 2'F-ANA > DNA(5'N).  相似文献   

7.
2'-Deoxy-2'-fluoro-2'-C-methyl nucleoside analogue 4 was designed and synthesized. Initial biological studies indicated that this compound showed promising activity against HCV replication.  相似文献   

8.
Synthetic RNAi activators have shown considerable potential for therapeutic application to silencing of pathology-causing genes. Typically these exogenous RNAi activators comprise duplex RNA of approximately 21 bp with 2 nt overhangs at the 3' ends. To improve efficacy of siRNAs, chemical modification at the 2'-OH group of ribose has been employed. Enhanced stability, gene silencing and attenuated immunostimulation have been demonstrated using this approach. Although promising, efficient and controlled delivery of highly negatively charged nucleic acid gene silencers remains problematic. To assess the potential utility of introducing positively charged groups at the 2' position, our investigations aimed at assessing efficacy of novel siRNAs containing 2'-O-guanidinopropyl (GP) moieties. We describe the formation of all four GP-modified nucleosides using the synthesis sequence of Michael addition with acrylonitrile followed by Raney-Ni reduction and guanidinylation. These precursors were used successfully to generate antihepatitis B virus (HBV) siRNAs. Testing in a cell culture model of viral replication demonstrated that the GP modifications improved silencing. Moreover, thermodynamic stability was not affected by the GP moieties and their introduction into each position of the seed region of the siRNA guide strand did not alter the silencing efficacy of the intended HBV target. These results demonstrate that modification of siRNAs with GP groups confers properties that may be useful for advancing therapeutic application of synthetic RNAi activators.  相似文献   

9.
A convenient synthesis of 2'-deoxy-2-fluoroadenosine from commercially available 2-fluoroadenine is described. The coupling reaction of silylated 2-fluoroadenine with phenyl 3,5-bis[O-(t-butyldimethylsilyl)]-2-deoxy-1-thio-D-erythro-pentofuranoside gave the corresponding 2-fluoro-2'-deoxyadenosine derivative (alpha/beta = 1:1) in good yield. The alpha- and beta-anomers were separated by chromatography, and then desilylated to give compounds 1a and 1b.  相似文献   

10.
Synthesis of a mutagenic nucleoside, 2'-deoxy-2-(p-nitrophenyl)-adenosine   总被引:1,自引:0,他引:1  
The reaction of 2-amino-6-chloropurine riboside with i-amyl nitrite in benzene in the presence of Cu2O, followed by treatment with NH3/MeOH gave 2-phenyladenosine (1). The crude sample of 1 was found to be mutagenic to bacteria (Salmonella typhimurium TA 98 and TA 100, without metabolic activation). When this material was subjected to high pressure liquid chromatography, the mutagenic activity was found only in contaminating minor components, whose structures were assigned as 2-(m- and p-nitrophenyl)-adenosines (2m,p). In order to study structure-activity relationships, several nucleoside and base analogues were synthesized. Among them, 2'-deoxy-2-(p-nitrophenyl)-adenosine (8) was the most potent mutagen as tested either with TA 98 or TA 100.  相似文献   

11.
2',3'-Dideoxy-3'-C-methyl nucleosides bearing the five naturally occurring nucleic acid bases were synthesized. Additionally, the 3'-deoxy-3'-C-methyl nucleoside analogues bearing 5-aminoimidazole-4-carboxamide as well as 1,2,4-triazole-3-carboxamide moieties were prepared. The synthesis of the corresponding 2',3'-dideoxy-3'-C-methyl triazole derivative was also accomplished. The dideoxynucleoside derivatives were prepared by radical deoxygenation from their 3'-deoxy-3'-C-methyl parent ribonucleosides. When evaluated for their antiviral activity in cell culture experiments, none of these compounds showed any significant antiviral activity.  相似文献   

12.
The preparation of two novel 2'-O-alkyl phosphoramidites bearing 1,2-diol and hydrazide functions for a chemoselective ligation is described. The former amidite was used to obtain 2'-modified oligodeoxyribonucleotides, which can be later oxidised by NaIO4 to generate 2'-aldehyde oligonucleotides. These were successfully conjugated to acceptor molecules. The latter amidite also showed good coupling yields, but the hydrazide function was demonstrated to be labile under basic deprotection conditions.  相似文献   

13.
14.
Adenine-based, regioisomeric nucleoside phosphonates with ribo, xylo and arabino configuration were synthesized in the protected form suitable for the phosphotriester-like, solid-phase synthesis of oligonucleotides. Phosphonate moiety was protected by 4-methoxy-1-oxido-2-picolyl group and the furanose hydroxyl by the dimethoxytrityl group.  相似文献   

15.
A facile synthesis of oligodeoxynucleotides (ODN) containing 2'-deoxy-6-thioinosine (dI6S) based on the convertible nucleoside O6-phenyl-2'-deoxyinosine is presented. After standard solid-phase DNA synthesis and removal of the cyanoethyl protecting groups with DBU treatment with aqueous sodium hydrogen sulfide introduces the sulfur functionality, deprotects the other nucleobases and cleaves the ODN from the solid support in a one-pot reaction. In addition, the extinction coefficient of 2'-deoxy-6-thioinosine is determined by enzymatic fragmentation of the resulting ODN in the presence of adenosine deaminase.  相似文献   

16.
Traditional strategies for establishing shRNA expression constructs are inefficient, error-prone, or costly. We describe a simple approach that overcomes these drawbacks. Briefly, the sense and antisense strands of the short hairpin RNA coding sequence are segmented into two parts, respectively, at asymmetric sites. The four resulting short oligonucleotides are synthesized. Each oligonucleotide is annealed with its opposite, resulting in a double-stranded fragment with sticky termini at both ends. The two fragments so generated can be easily spliced by simple ligation to reconstitute the full-length short hairpin RNA coding sequence which can then be cloned into an appropriately restricted vector.  相似文献   

17.
A triester method for the synthesis of deoxynucleoside phosphorodithioate dimers is described. The phosphorodithioate linkage is introduced using a new dithiophosphorylating reagent DPSE-SP(S)Cl2 where DPSE = 2-diphenylmethylsilylethyl. This group is removed quickly using tetra-butylammonium fluoride leading to the quantitative formation of phosphorodithioate diesters uncontaminated with the corresponding phosphorothioates. The utility of this group is demonstrated by the synthesis of a pentadecathymidylic acid, [T(PS2)T(PO2)]7T, which contains alternating phosphorodithioate/phosphate diester internucleotide linkages.  相似文献   

18.
It is demonstrated that a solution of dichloroacetic acid in toluene removes dimethoxytrityl groups from the 5'-terminus of an antisense phosphorothioate oligodeoxyribonucleotide (ISIS 5132/CGP69846A) during synthesis on solid support cleanly and efficiently. It is therefore suggested to replace health hazardous dichloromethane which is typically used in oligonucleotide synthesis as solvent for DMTr-removal by toluene.  相似文献   

19.
A new synthetic method for the preparation of the 5'-deoxy-5'-methylphosphonate linked thymidine oligonucleotides (5'-methylenephosphonate analogues) was developed. The method is based on the use of a phosphonate protecting group, 4-methoxy-1-oxido-2-picolyl, enabling intramolecular nucleophilic catalysis which together with the condensing agent, 2,4,6-triisopropylbenzenesulfonyl chloride, secures fast and efficient formation of the 5'-methylenephosphonate internucleosidic bonds. The produced protected oligomers were treated with thiophenol and triethylamine to remove the phosphonate protecting groups, cleaved from the solid support using concentrated aqueous ammonia, and purified by HPLC. Several thymidine oligonucleotide analogues with the chain length of up to 20 nucleotidic units, in which all internal 5'-oxygen atoms have been replaced by methylene groups directly bound to phosphorus, were synthesised using this methodology.  相似文献   

20.
Chemical and enzymatic methods were employed for the synthesis of the title compound, 2'F-Guo 7. High antiviral activity of 2'F-Guo was established in chick embryo cells infected with influenza virus FPV/Rostock/34 (H7N1) and herpes simplex virus (HSV) type I (1C strain).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号