首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wada T  Sato H  Inoue Y 《Biopolymers》2004,76(1):15-20
A novel nucleic acid model using peptide ribonucleic acid (PRNA), which contains 5'-amino-5'-deoxypyrimidine ribonucleoside as a recognition site for nucleic acids, has been designed, synthesized and applied to the external reversible control of recognition behavior of the complementary polynucleotide through the orientational switching of the nucleobase induced by borate.  相似文献   

2.
An oligonucleotide P3'-->N5' phosphoramidate (5'-amino-DNA) attracts much attention because of its potential for application to DNA sequencing; however, its ability to hybridize with complementary strands is low. To overcome this drawback of the 5-amino-DNA, we have designed and successfully synthesized a novel nucleic acid analogue having a P3'-->N5' phosphoramidate linkage and a constrained sugar moiety, 5'-amino-3'-C,5'-N-methylene bridged nucleic acid (5'-amino-3',5'-BNA). The binding affinity of the 5'-amino-3',5'-BNA towards complementary DNA and RNA strands was investigated by UV melting experiments. The melting temperature (Tm) of the duplex comprising the 5'-amino-3',5'-BNA and its complementary strand was much higher than that of the duplex containing the corresponding 5-amino-DNA.  相似文献   

3.
A novel nucleic acid model that possessed 5'-amino-5'-deoxyuridine at alpha- and gamma-position of L-glutamic acid through amide linkage using 5'-amino group was synthesized and the conformation and the hybridization properties were studied. The complex of alpha-PRNA with complementary DNA/RNA was more stable than the corresponding natural duplex in the absence of borate. Its recognition ability was however lost when borax was added to the solution.  相似文献   

4.
Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail.  相似文献   

5.
The synthesis and properties of a bridged nucleic acid analogue containing a N3'-->P5' phosphoramidate linkage, 3'-amino-2',4'-BNA, is described. A heterodimer containing a 3'-amino-2',4'-BNA thymine monomer, and thymine and methylcytosine monomers of 3'-amino-2',4'-BNA and their 5'-phosphoramidites, were synthesized efficiently. The dimer and monomers were incorporated into oligonucleotides by conventional 3'-->5' assembly, and 5'-->3' reverse assembly phosphoramidite protocols, respectively. Compared to a natural DNA oligonucleotide, modified oligonucleotides containing the 3'-amino-2',4'-BNA residue formed highly stable duplexes and triplexes with single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and double-stranded DNA (dsDNA) targets, with the average increase in melting temperature (T(m)) against ssDNA, ssRNA and dsDNA being +2.7 to +4.0 degrees C, +5.0 to +7.0 degrees C, and +5.0 to +11.0 degrees C, respectively. These increases are comparable to those observed for 2',4'-BNA-modified oligonucleotides. In addition, an oligonucleotide modified with a single 3'-amino-2',4'-BNA thymine residue showed extraordinarily high resistance to nuclease degradation, much higher than that of 2',4'-BNA and substantially higher even than that of 3'-amino-DNA and phosphorothioate oligonucleotides. The above properties indicate that 3'-amino-2',4'-BNA has significant potential for antisense and antigene applications.  相似文献   

6.
Peptide nucleic acid (PNA1) containing a 5-methylisocytidine (iC) nucleobase has been synthesized. Triple helix formation between PNA1 and RNA hairpins having variable base pairs interacting with iC was studied using isothermal titration calorimetry. The iC nucleobase recognized the proposed target, C-G inversion in polypurine tract of RNA, with slightly higher affinity than the natural nucleobases, though the sequence selectivity of recognition was low. Compared to non-modified PNA, PNA1 had lower affinity for its RNA target.  相似文献   

7.
Nucleobase analogs 5-methylisocytosine (MeisoC) and isoguanine (isoG) form a non-natural base pair in duplex nucleic acids with base pairing specificity orthogonal to the natural nucleobase pairs. Sequencing reactions were conducted with oligodeoxyribonucleotides (ODNs) containing dMeisoC and disoG using modified pyrosequencing and dye terminator methods. Modified dye terminator sequencing was generally useful for the sequence identification of ODNs containing the non-natural nucleobases. The two sequencing methods were also used to monitor nucleotide incorporation and subsequent extension by Family A polymerases used in the sequencing methods with a six-nucleobase system that includes dMeisoC and disoG. Nucleic acids containing the six-nucleobase system could be replicated well, but not as well as natural nucleic acids, especially in regions of high dMeisoC–disoG content. Challenges in replication with dMeisoC–disoG are consistent with nucleobase tautomerism in the insertion step and disrupted minor groove nucleobase pair–polymerase contacts in subsequent extension.  相似文献   

8.
A rapid method for the synthesis of oligodeoxynucleotides (ODNs) terminated by 5'-amino-5'-deoxythymidine is described. A 3'-phosphorylated ODN (the donor) is incubated in aqueous solution with 5'-amino- 5'-deoxythymidine in the presence of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), extending the donor by one residue via a phosphoramidate bond. Template- directed ligation of the extended donor and an acceptor ODN, followed by acid hydrolysis, yields the acceptor ODN extended by a single 5'-amino-5'-deoxythymidine residue at its 5'terminus.  相似文献   

9.
The 2‐(o‐nitrophenyl)‐propyl (NPP) group is used as caging group to mask the nucleobases adenine and cytosine in N‐(2‐aminoethyl)glycine peptide nucleic acids (aeg‐PNA). The adeninyl and cytosinyl nucleo amino acid building blocks Fmoc‐aNPP‐aeg‐OH and Fmoc‐cNPP‐aeg‐OH were synthesized and incorporated into PNA sequences by Fmoc solid phase synthesis relying on high stability of the NPP nucleobase protecting group toward Fmoc‐cleavage, coupling, capping, and resin cleavage conditions. Removal of the nucleobase caging group was achieved by UV‐LED irradiation at 365 nm. The nucleobase caging groups provided sterical crowding effecting the Watson–Crick base pairing, and thereby, the PNA double strand stabilities. Duplex formation can completely be suppressed for complementary PNA containing caging groups in both strands. PNA/PNA recognition can be completely restored by UV light‐triggered release of the photolabile protecting group. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The P-N bond in oligonucleotide P3' --> N5' phosphoramidates (5'-amino-DNA) is known to be chemoselectively cleaved under mild acidic conditions. We prepared homopyrimidine oligonucleotides containing 5'-amino-5'-deoxythymidine (5'-amino-DNA thymine monomer) or its conformationally locked congener, 5'-amino-2',4'-BNA thymine monomer, at midpoint of the sequence. The effect of triplex formation with homopurineohomopyrimidine dsDNA targets on acid-mediated hydrolysis of the P3' --> N5' phosphoramidate linkage was evaluated. Very interestingly, it was found that the triplex formation significantly accelerates the P-N bond cleavage.  相似文献   

11.
We have investigated the incorporation of C6-derivatives of uracil into polypyrimidine peptide nucleic acid oligomers (PNA). Starting with orotic acid (uracil-6-carboxylic acid) we have prepared a PNA monomer containing the methyl orotate nucleobase which is compatible with Fmoc-based synthesis. Treatment of the resin-bound oligomers with hydroxide or amines cleanly converted the ester to an orotic acid or orotamide-containing PNA. Alternatively, the methyl orotate-containing PNA was liberated from the resin by standard acidolysis. PNA bearing a modified nucleobase was found to hybridize to both poly(rA) and poly(dA). Complexes with poly(rA) were more stable than those with poly(dA) but both were destabilized relative to an unmodified PNA. Modification of a terminal residue was tolerated better than modification of an internal position. The type of charge provided by the modification affected the complex stability. In the worst case, an internal modification was nearly as detrimental as a base mismatch.  相似文献   

12.
We have investigated the incorporation of C6-derivatives of uracil into polypyrimidine peptide nucleic acid oligomers (PNA). Starting with orotic acid (uracil-6-carboxylic acid) we have prepared a PNA monomer containing the methyl orotate nucleobase which is compatible with Fmoc-based synthesis. Treatment of the resin-bound oligomers with hydroxide or amines cleanly converted the ester to an orotic acid or orotamide-containing PNA. Alternatively, the methyl orotate-containing PNA was liberated from the resin by standard acidolysis. PNA bearing a modified nucleobase was found to hybridize to both poly(rA) and poly(dA). Complexes with poly(rA) were more stable than those with poly(dA) but both were destabilized relative to an unmodified PNA. Modification of a terminal residue was tolerated better than modification of an internal position. The type of charge provided by the modification affected the complex stability. In the worst case, an internal modification was nearly as detrimental as a base mismatch.  相似文献   

13.
Basic dyes cause an increase in hydrogen-ion concentration when added to a solution containing nucleic acid, the both solutions were originally at the same pH. Acid dyes have no effect on nucleic acid solutions. Basic dyes show the same behavior when treated with solutions of typical proteins. Acid dyes when treated with proteins show an analogous effect but in the opposite direction. The only adequate explanation found is that there is a definite reaction between the dye ions and the oppositely charged ions of protein or nucleic acid. The bearing of these results on the theory of staining is discussed. The growing recognition of the dominance of chemical forces in colloidal adsorption behavior is indicated, and certain of the experimental bases for this recognition are pointed out and discussed.  相似文献   

14.
Basic dyes cause an increase in hydrogen-ion concentration when added to a solution containing nucleic acid, the both solutions were originally at the same pH. Acid dyes have no effect on nucleic acid solutions. Basic dyes show the same behavior when treated with solutions of typical proteins. Acid dyes when treated with proteins show an analogous effect but in the opposite direction. The only adequate explanation found is that there is a definite reaction between the dye ions and the oppositely charged ions of protein or nucleic acid. The bearing of these results on the theory of staining is discussed. The growing recognition of the dominance of chemical forces in colloidal adsorption behavior is indicated, and certain of the experimental bases for this recognition are pointed out and discussed.  相似文献   

15.
DNA cytosine-5 methyltransferase (DNMT) catalyzes methylation at the C5 position of cytosine in the CpG sequence in double stranded DNA to give 5-methylCpG (mCpG) in the epigenetic regulation step in human cells. The entire reaction mechanism of DNMT is divided into six steps, which are scanning, recognition, flipping, loop locking, methylation, and releasing. The methylation and releasing mechanism are well-investigated; however, few reports are known about other reaction steps. To obtain insight into the reaction mechanism, we planned the incorporation of acyclic nucleosides, which make it easy to flip out the target nucleobase, into oligodeoxynucleotides (ODNs) and investigated the interaction between the ODN and DNMT. Here, we describe the design and synthesis of ODNs containing new acyclic 5-fluorocytosine nucleosides and their physiological and biological properties, including their interactions with DNMT. We found that the ODNs containing the acyclic 5-fluorocytosine nucleoside showed higher flexibility than those that contain 5-fluoro-2′-deoxycytidine. The observed flexibility of ODNs is expected to influence the scanning and recognition steps due to the decrease in helicity of the B-form.  相似文献   

16.
During the past decade, synthetic nucleobase oligomers have found wide use in biochemical sciences, biotechnology and molecular medicine, both as research and/or diagnostic tools and as therapeutics. Numerous applications of common and modified oligonucleotides and oligonucleotide mimics rely on their ability to sequence-specifically recognize nucleic acid targets (DNA or RNA) by forming duplexes or triplexes. In general, these applications would benefit significantly from enhanced binding affinities of nucleobase oligomers in the formation of various secondary structures. However, for high-affinity probes, the selectivity of sequence recognition must also be improved to avoid undesirable associations with mismatched DNA and RNA sites. Here, we review recent progress in understanding the molecular mechanisms of nucleic acid interactions and the development of new high-affinity plus high-specificity oligonucleotides and their mimics, with particular emphasis on peptide nucleic acids.  相似文献   

17.
Nucleic acid double helices are stabilized by hydrogen bonding and stacking forces (a combination of hydrophobic, dispersive and electrostatic forces) of the base pairs in the helix. One would predict the hydrogen bonding contributions to increase and the stacking contributions to decrease as the water activity in the medium decreases. Study of nucleobase paired duplexes in the absence of water and ultimately in pure aprotic, non-polar organic solvents is not possible with natural phosphodiester nucleic acids due to the ionic phosphate groups and the associated cations, but could be possible with non-ionic nucleic acid analogues or mimics such as peptide nucleic acids. We now report that peptide nucleic acid (PNA) (in contrast to DNA) duplexes show almost unaffected stability in up to 70% dimethylformamide (DMF) or dioxane, and extrapolation of the data to conditions of 100% organic solvents indicates only minor (or no) destabilization of the PNA duplexes. Our data indicate that stacking forces contribute little if at all to the duplex stability under these conditions. The differences in behaviour between the PNA and the DNA duplexes are attributed to the differences in hydration and counter ion release rather than to the differences in nucleobase interaction. These results support the possibility of having stable nucleobase paired double helices in organic solvents.  相似文献   

18.
19.
Isopycnic centrifugation in CsCl gradients was used to quantify the incorporation of 5-iodo-5'-amino-2',5'-dideoxyuridine and 5-iodo-2'-deoxyuridine into herpes simplex virus type 1 DNA. A parallelism between the degree of incorporation into viral DNA and the inhibition of herpes simplex virus type I replication was found for both thymidine analogs. A concentration of 5-iodo-5'-amino-2',5'-dideoxyuridine approximately 100 times greater than 5-iodo-2'-deoxyuridine was required to achieve similar levels of antiviral activity. However, the inhibitory effects of these compounds are similar when compared with respect to the percent of substitution for thymidine in herpes simplex virus type I DNA. Damage to the viral DNA, as indicated by the presence of single or double-stranded breaks, was assessed by centrifugation in alkaline and neutral sucrose gradients. The incorporation of 5-iodo-5'-amino-2',5'-dideoxyuridine into herpes simplex virus type I DNA produced single and, to a lesser extent, double-stranded breaks in a dose-dependent manner. 5-Iodo-2'-deoxyuridine did not, however, induced DNA breakage. These data indicate that the additional presence of a phosphoramidate bond in the DNA produced the extensive damage detected under these conditions, but that such damage is not required for antiviral activity.  相似文献   

20.
5-Iodo-5'-amino-2',5'-dideoxyuridine-5'-N'-triphosphate (AIdUTP), a phosphoramidate analog of 5-iodo-2',5'-dideoxyuridine 5'-triphosphate (IdUTP), was synthesized and some of its chemical and biological properties were investigated. Although AIdUTP is stable in alkaline solutions, below pH 8 it undergoes degradation by a novel phosphorylysis reaction which exhibits first order kinetics. Inclusion of magnesium ion in the reaction mixture decreased the rate of degradation. Protonation of a group on AIdUTP which has a pKa of 6.10, presumably the secondary ionized oxygen on the gamma phosphate, precedes phosphorylysis. The only detectable reaction products are the nucleoside, 5-iodo-5'-amino-2',5'-dideoxyuridine (AIdUrd), and trimetaphosphate. A mechanism for the acid catalyzed phosphorylysis of AIdUTP is proposed. AIdUTP, like TTP, converts Escherichia coli thymidine kinase into an inactive dimer with a sedimentation coefficient of 5.78 S. AIdUTP is, however, 60-fold more potent as an allosteric inhibitor than is TTP at pH 7.8. Although the inhibitory effect of TTP is markedly reduced at high pH, the activity of AIdUTP is lowered only slightly. The allosteric effects of AIdUTP also differ from those of IdUTP, which is an inhibitor at low pH but a strong activator above pH 7.4. 5-Iodo-2'-deoxycytidine 5'-triphosphate, a potent enzyme activator, cannot completely reverse the AIdUTP inhibition, even when present at a 150-fold molar excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号