首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to extracellular signals, the mechanisms utilized to transduce nuclear apoptotic signals are not well understood. Characterizing these mechanisms is important for predicting how tumors will respond to genotoxic radiation or chemotherapy. The retinoblastoma (Rb) tumor suppressor protein can regulate apoptosis triggered by DNA damage through an unknown mechanism. The nuclear death domain-containing protein p84N5 can induce apoptosis that is inhibited by association with Rb. The pattern of caspase and NF-kappaB activation during p84N5-induced apoptosis is similar to p53-independent cellular responses to DNA damage. One hallmark of this response is the activation of a G(2)/M cell cycle checkpoint. In this report, we characterize the effects of p84N5 on the cell cycle. Expression of p84N5 induces changes in cell cycle distribution and kinetics that are consistent with the activation of a G(2)/M cell cycle checkpoint. Like the radiation-induced checkpoint, caffeine blocks p84N5-induced G(2)/M arrest but not subsequent apoptotic cell death. The p84N5-induced checkpoint is functional in ataxia telangiectasia-mutated kinase-deficient cells. We conclude that p84N5 induces an ataxia telangiectasia-mutated kinase (ATM)-independent, caffeine-sensitive G(2)/M cell cycle arrest prior to the onset of apoptosis. This conclusion is consistent with the hypotheses that p84N5 functions in an Rb-regulated cellular response that is similar to that triggered by DNA damage.  相似文献   

2.
DNA damage induced by reactive oxygen species and several chemotherapeutic agents promotes both p53 and poly (ADP-ribose) polymerase (PARP) activation. p53 activation is well known to regulate apoptotic cell death, whereas robust activation of PARP-1 has been shown to promote a necrotic cell death associated with energetic collapse. Here we identify a novel role for p53 in modulating PARP enzymatic activity to regulate necrotic cell death. In mouse embryonic fibroblasts, human colorectal and human breast cancer cell lines, loss of p53 function promotes resistance to necrotic, PARP-mediated cell death. We therefore demonstrate that p53 can regulate both necrotic and apoptotic cell death, mutations or deletions in this tumor-suppressor protein may be selected by cancer cells to provide not only their resistance to apoptosis but also to necrosis, and explain resistance to chemotherapy and radiation even when it kills via non-apoptotic mechanisms.  相似文献   

3.
Increasingly, anti-cancer medications are being reported to induce cell death mechanisms other than apoptosis. Activating alternate death mechanisms introduces the potential to kill cells that have defects in their apoptotic machinery, as is commonly observed in cancer cells, including in hematological malignancies. We, and others, have previously reported that the mTOR inhibitor everolimus has pre-clinical efficacy and induces caspase-independent cell death in acute lymphoblastic leukemia cells. Furthermore, everolimus is currently in clinical trial for acute lymphoblastic leukemia. Here we characterize the death mechanism activated by everolimus in acute lymphoblastic leukemia cells. We find that cell death is caspase-independent and lacks the morphology associated with apoptosis. Although mitochondrial depolarization is an early event, permeabilization of the outer mitochondrial membrane only occurs after cell death has occurred. While morphological and biochemical evidence shows that autophagy is clearly present it is not responsible for the observed cell death. There are a number of features consistent with paraptosis including morphology, caspase-independence, and the requirement for new protein synthesis. However in contrast to some reports of paraptosis, the activation of JNK signaling was not required for everolimus-induced cell death. Overall in acute lymphoblastic leukemia cells everolimus induces a cell death that resembles paraptosis.  相似文献   

4.
Apoptosis is a morphologically defined type of cell death associated with the activation of certain proteases belonging to the ICE/CED-3 family, known as caspases. Resistance to apoptosis has been implicated as one of the mechanisms that participates in oncogenesis. We found that the broad-spectrum peptide inhibitor of the caspases, zVAD-fmk, interferes in a dose-dependent way with all the morphological and biochemical changes associated with apoptosis induced by anti-CD95 mAb, staurosporine, VP-16 and Act-D. However, with the exception of anti-CD95-triggered apoptosis, the insulted cells lost their clonogenic potential, even when pre-treated with a high dose of zVAD-fmk. Under these circumstances, the dying cells displayed no signs of apoptosis, including activation of caspases, externalization of phosphatidylserine, nuclear condensation, or DNA fragmentation. Instead, this cell death was characterized by cytoplasmic and nuclear vacuolization followed by the loss of plasma membrane integrity. Thus, preventing the onset of apoptosis by blocking caspase activity did not rescue cells from dying in response to drugs such as staurosporine, VP-16 and Act-D. In comparison, ectopic expression of anti-apoptotic oncogenes such as bcl-2 and bcr-abl not only inhibited apoptosis but also preserved the clonogenic potential of the cells. Therefore, oncogenesis is promoted not by simply interfering with caspase-mediated apoptosis, but by preventing an upstream event which we define as the commitment point for cell death.  相似文献   

5.
The relationship between apoptosis and cell differentiation has been a subject for continuous debate, with evidence showing leukaemic cell differentiation and drug-induced apoptosis have reciprocal, interdependent and a highly schedule-dependent relationship. We have addressed this relationship in terms of a widely-used model for apoptosis induced by cytotoxic drugs: namely the effect of etoposide on CEM cells. In respect of commitment toward differentiation, we assessed changes in expression of marker genes and the level of CD3 antigenicity. Changes in these parameters following exposure of CEM cells to etoposide was similar to that observed following treatment of the same cells with phorbol 12-myristate 13-acetate (PMA), though this latter treatment did not cause cell death. Similarities in response to etoposide and PMA also included generation of 50 kilobase fragmentation of DNA and convolution of nuclei as assessed by transmission electron microscopy. However, condensation of chromatin and externalization of phosphatidylserine were only recorded in response to the cytotoxic drug and not in response to PMA. The data are consistent with apoptosis in these lymphoblastoid cells being accompanied by activation of specific markers of T-cell differentiation, but ultimately involving processes unequivocally associated with cell death.  相似文献   

6.
Mycophenolic acid (MPA), widely used to prevent organ transplant rejection, may induce toxicity and impair function in β-cells. Mechanisms of MPA-induced cell death have not been fully explored. In this study, we examined gene expression patterns in INS-1E cells and isolated primary rat islets following MPA treatment using the Illumina-cDNA microarray. The MPA treatment decreases RhoGDI-α gene expression, which points to apoptosis by JNK activation through a MAPKs-dependent pathway. A strong association between RhoGDI-α and Rac1 activation during MPA-induced apoptosis is also consistent with apoptosis through JNK. Suppression of RhoGDI-α using siRNA and gene over-expression both affected the cell death rate, consistent with Rac1 activation and downstream activation of MAPKs signaling. We confirmed that Rac1 protein mediates the interaction between RhoGDI-α and JNK signaling. We conclude that MPA-induced cell death in primary β-cells and an insulin-secreting cell line proceeds through RhoGDI-α down-regulation linked to Rac1 activation, with subsequent activation of JNK. The RhoGDI-α/Rac1/JNK pathway may present a key to intervention in MPA-induced islet apoptosis.  相似文献   

7.
Coxsackievirus B3-induced apoptosis and caspase-3   总被引:11,自引:0,他引:11  
Yuan JP  Zhao W  Wang HT  Wu KY  Li T  Guo XK  Tong SQ 《Cell research》2003,13(3):203-209
  相似文献   

8.
DNA fragmentation produced by apoptotic DNases (endonucleases) leads to irreversible cell death. Although apoptotic DNases are simultaneously induced following toxic/oxidative cell injury and/or failed DNA repair, the study of DNases in apoptosis has generally been reductionist in approach, focusing on individual DNases rather than their possible cooperativity. Coordinated induction of DNases would require a mechanism of communication; however, mutual DNase induction or activation of DNases by enzymatic or non-enzymatic mechanisms is not currently recognized. The evidence presented in this review suggests apoptotic DNases operate in a network in which members induce each other through the DNA breaks they produce. With DNA breaks being a common communicator among DNases, it would be logical to propose that DNA breaks from other sources such as oxidative DNA damage or actions of DNA repair endonucleases and DNA topoisomerases may also serve as triggers for a cooperative DNase feedback loop leading to elevated DNA fragmentation and subsequent cell death. Therefore, mutual induction of apoptotic DNases has serious implications for studies focused on activation or inhibition of specific DNases as a strategy for therapeutic intervention aimed at modulation of cell death.  相似文献   

9.
Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis.  相似文献   

10.
The hepatitis B virus X protein (HBx) has been implicated in the development of hepatocellular carcinoma (HCC) associated with chronic infection. As a multifunctional protein, HBx regulates numerous cellular pathways, including autophagy. Although autophagy has been shown to participate in viral DNA replication and envelopment, it remains unclear whether HBx-activated autophagy affects host cell death, which is relevant to both viral pathogenicity and the development of HCC. Here, we showed that enforced expression of HBx can inhibit starvation-induced cell death in hepatic (L02 and Chang) or hepatoma (HepG2 and BEL-7404) cell lines. Starvation-induced cell death was greatly increased in HBX-expressing cell lines treated either with the autophagy inhibitor 3-methyladenine (3-MA) or with an siRNA directed against an autophagy gene, beclin 1. In contrast, treatment of cells with the apoptosis inhibitor Z-Vad-fmk significantly reduced cell death. Our results demonstrate that HBx-mediated cell survival during starvation is dependent on autophagy. We then further investigated the mechanisms of cell death inhibition by HBx. We found that HBx inhibited the activation of caspase-3, an execution caspase, blocked the release of mitochondrial apoptogenic factors, such as cytochrome c and apoptosis-inducing factor (AIF), and inhibited the activation of caspase-9 during starvation. These results demonstrate that HBx reduces cell death through inhibition of mitochondrial apoptotic pathways. Moreover, increased cell viability was also observed in HepG2.2.15 cells that replicate HBV and in cells transfected with HBV genomic DNA. Our findings demonstrate that HBx promotes cell survival during nutrient deprivation through inhibition of apoptosis and activation of autophagy. This highlights an important potential role of autophagy in HBV-infected hepatocytes growing under nutrient-deficient conditions.  相似文献   

11.
We previously showed that apoptosis in the lungs of sheep exposed to fluoro-edenite fibres is induced via the receptor pathway. The present study was performed to gain further insights into the mechanisms of activation of programmed cell death induced by the fibres. Fluoro-edenite fibres are similar in size and morphology to some amphibolic asbestos fibres. They have been found in benmoreitic lavas, in the local stone quarry, in building materials and in road paving at Biancavilla, a town in eastern Sicily (Italy), where epidemiological surveys revealed a cluster of mortality from pleural mesothelioma. Inhalation of asbestos fibres can cause chronic inflammation and carcinogenesis. Since fluoro-edenite has been shown to activate the apoptotic process, we set out to characterise the expression of apoptosis-regulating proteins in fluoro-edenite-exposed lung disease and sought to determine if apoptosis results from fluoro-edenite exposure. Lung tissue from apparently healthy sheep habitually grazing near Biancavilla was processed for immunohistochemical localisation of bcl-2 and bax. Results showed epithelial and interstitial bax overexpression, especially in cells directly in contact with the fibres, and negative bcl-2 immunoexpression. TUNEL-positive cells were detected in alveoli and connective tissue. The integrity of alveolar epithelium and alveolar apoptosis are critical determinants in the pathways that initiate fibrogenesis in the lung and fibroblastic foci are usually found close to abnormal or denuded alveolar epithelium. Our results are consistent with the hypothesis that apoptosis is an important mechanism for removing cells with irreparable fluoro-edenite-induced genetic changes that predispose them to a neoplastic evolution.  相似文献   

12.
Spontaneous or therapeutic induction of T cell apoptosis plays a critical role in establishing transplantation tolerance and maintaining remission of autoimmune diseases. We investigated the mechanisms of apoptosis induced by Chinese and Western antirheumatic drugs (ARDs) in human T cells. We found that hydroxychloroquine, Tripterygium wilfordii hook F, and tetrandrine (Tet), but not methotrexate, at therapeutic concentrations can cause T cell death. In addition, Tet selectively killed T cells, especially activated T cells. Although ARD-induced cytotoxicity was mediated through apoptotic mechanisms, Fas/Fas ligand interaction was not required. We further demonstrated that the processes of phosphatidylserine externalization and DNA damage along the ARD-induced T cell apoptotic pathway could operate independently, and that selective inhibition of DNA damage by caspase inhibitors did not prevent T cells from undergoing cell death. Moreover, we found that Tet- and Tripterygium wilfordii hook F-induced T cell DNA damage required caspase-3 activity, and hydroxychloroquine-induced T cell DNA damage was mediated through a caspase-3- and caspase-8-independent, but Z-Asp-Glu-Val-Asp-fluomethyl ketone-sensitive, signaling pathway. Finally, the observation that ARD-induced activation of caspase-3 in both Fas-sensitive and Fas-resistant Jurkat T cells indicates that Fas/Fas ligand interaction plays no role in ARD-induced T cell apoptosis. Our observations provide new information about the complex apoptotic mechanisms of ARDs, and have implications for combining Western and Chinese ARDs that have different immunomodulatory mechanisms in the therapy of autoimmune diseases and transplantation rejection.  相似文献   

13.
Programmed cell death in fission yeast   总被引:2,自引:0,他引:2  
Recently a metacaspase, encoded by YCA1, has been implicated in a primitive form of apoptosis or programmed cell death in yeast. Previously it had been shown that over-expression of mammalian pro-apoptotic proteins can induce cell death in yeast, but the mechanism of how cell death occurred was not clearly established. More recently, it has been shown that DNA or oxidative damage, or other cell cycle blocks, can result in cell death that mimics apoptosis in higher cells. Also, in fission yeast deletion of genes required for triacylglycerol synthesis leads to cell death and expression of apoptotic markers. A metacaspase sharing greater than 40% identity to budding yeast Yca1 has been identified in fission yeast, however, its role in programmed cell death is not yet known. Analysis of the genetic pathways that influence cell death in yeast may provide insights into the mechanisms of apoptosis in all eukaryotic organisms.  相似文献   

14.
15.
Although apoptosis and necrosis have been considered different pathways to cell death, only one compound induces both types of cell death. Diethyldithiocarbamate (DDC) has been shown to have antioxidant or prooxidant effects in several different systems. We observed in our present study that DDC induced not only apoptosis but also necrosis depending on its dosage in HL60 premyelocytic leukemia cells. Moreover, in hypoxia cell culture conditions, DDC-induced necrotic cells decreased but DDC-induced apoptosis continued. We investigated the DDC-induced different cell death mechanisms as they are correlated with reactive oxygen species (ROS). High-dose DDC-induced necrotic cell death is thought to depend on the increase of intracellular ROS, while low-dose DDC-induced apoptosis is thought to depend on changes of the intracellular redox state by the transporting of external metal ions. There was no sequential or quantitative change of Bcl-2 family proteins in DDC-induced apoptotic or necrotic pathways. However, the mitochondrial transmembrane potential was remarkably decreased in the DDC-induced necrosis. Finally, duration of c-Jun N-terminal kinase (JNK) activation resulted in different types of cell death.  相似文献   

16.
Alveolar macrophages (AMs) are the principal target cells of silica and occupy a key position in the pathogenesis of silica-related diseases. Silica has been found to induce apoptosis in AMs, whereas its underlying mechanisms involving the initiation and execution of apoptosis are largely unknown. The main objective of the present study was to examine the form of cell death caused by silica and the mechanisms involved. Silica-induced apoptosis in AMs was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay and cell cycle/DNA content analysis. The elevated level of reactive oxygen species (ROS), caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in silica-treated AMs were also determined. The results showed that there was a temporal pattern of apoptotic events in silica-treated AMs, starting with ROS formation and followed by caspase-9 and caspase-3 activation, PARP cleavage, and DNA fragmentation. Silica-induced apoptosis was significantly attenuated by a caspase-3 inhibitor, N-acetyl-Asp-Glu-Val-Asp aldehyde, and ebselen, a potent antioxidant. These findings suggest that apoptosis is an important form of cell death caused by silica exposure in which the elevated ROS level that results from silica exposure may act as an initiator, leading to caspase activation and PARP cleavage to execute the apoptotic process.  相似文献   

17.
The benzophenanthridine alkaloid sanguinarine has antimicrobial and possibly anticancer properties but it is not clear to what extent these activities involve DNA damage. Thus, we studied its ability to cause DNA single and double strand breaks, as well as increased levels of 8-oxodeoxyguanosine, in human colon cancer cells and found DNA damage consistent with oxidation. Since the tumor suppressor p53 is frequently involved in inducing apoptosis following DNA damage we investigated the effect of sanguinarine in wild type, p53-mutant and p53-null colon cancer cell lines. We found them to be equally sensitive to this plant compound, indicating that cell death is not mediated by p53 in this case. In addition, our observation that apoptosis induced by sanguinarine is initiated very rapidly raised the question whether there is enough time for cellular signaling in response to DNA damage. Moreover, the abundance of double strand breaks is not consistent with only oxidative damage to DNA. We conclude that the majority of DNA double strand breaks in sanguinarine-treated cells are likely the result, rather than the cause, of apoptotic cell death and that apoptosis induced by sanguinarine is independent of p53 and most likely independent of DNA damage.  相似文献   

18.
Abstract: The polymeric dye aurintricarboxylic acid (ATA) has been shown to protect various cell types from apoptotic cell death, reportedly through inhibition of a calcium-dependent endonuclease activity. Recent studies have indicated that there may be some commonalities among apoptosis, programmed cell death, and certain other forms of neuronal death. To begin to explore the possibility of common biochemical mechanisms underlying ischemia-or excitotoxin-induced neuronal death and apoptosis in vivo, gerbils or rats subjected to transient global ischemia or NMDA microinjection, respectively, received a simultaneous intracerebral infusion of ATA or vehicle. As a biochemical marker of neuronal death, spectrin proteolysis, which is mediated by activation of calpain I, was measured in hippocampus after 24 h. ATA treatment resulted in a profound reduction of both NMDA-and ischemia-induced spectrin proteolysis, consistent with the possibility of some common mechanism in apoptosis and other forms of neuronal death in vivo.  相似文献   

19.
Death ligands not only induce apoptosis but can also trigger necrosis with distinct biochemical and morphological features. We recently showed that in L929 cells CD95 ligation induces apoptosis, whereas TNF elicits necrosis. Treatment with anti-CD95 resulted in typical apoptosis characterized by caspase activation and DNA fragmentation. These events were barely induced by TNF, although TNF triggered cell death to a similar extent as CD95. Surprisingly, whereas the caspase inhibitor zVAD prevented CD95-mediated apoptosis, it potentiated TNF-induced necrosis. Cotreatment with TNF and zVAD was characterized by ATP depletion and accelerated necrosis. To investigate the mechanisms underlying TNF-induced cell death and its potentiation by zVAD, we examined the role of poly(ADP-ribose)polymerase-1 (PARP-1). TNF but not CD95 mediated PARP activation, whereas a PARP inhibitor suppressed TNF-induced necrosis and the sensitizing effect of zVAD. In addition, fibroblasts expressing a noncleavable PARP-1 mutant were more sensitive to TNF than wild-type cells. Our results indicate that TNF induces PARP activation leading to ATP depletion and subsequent necrosis. In contrast, in CD95-mediated apoptosis caspases cause PARP-1 cleavage and thereby maintain ATP levels. Because ATP is required for apoptosis, we suggest that PARP-1 cleavage functions as a molecular switch between apoptotic and necrotic modes of death receptor-induced cell death.  相似文献   

20.
Formerly, the mechanisms responsible for the killing of cells by ionizing radiation were regarded as being divided into two distinct forms, interphase death and reproductive death. Since they were defined based on the classical radiobiological concepts using a clonogenic cell survival assay, biochemical and molecular biological mechanisms involved in the induction of radiation-induced cell death were not fully understood in relation to the modes of cell death. Recent multidisciplinary approaches to cell death mechanism have revealed that radiation-induced cell death is divided into several distinct pathways by the time course and cell-cycle position, and that apoptotic cell death plays a key role in almost every mode of cell death. This review discusses the mechanisms of radiation-induced apoptosis in relation to cellcycle progression and highlights a new concept of the mode of cell death: 'premitotic apoptosis' and 'postmitotic apoptosis'. The former is a rapid apoptotic cell death associated with a prompt activation of caspase-3, a key enzyme of intracellular signaling of apoptosis. Arapid execution of cell killing in premitotic apoptosis is presumably due to the prompt activation of a set of pre-existed molecules following DNA damages. In contrast, the latter is a delayed apoptotic cell death after cell division, and unlike premitotic apoptosis, it neither requires a rapid activation of caspase-3 nor is inhibited by a specific inhibitor, Ac-DEVD-CHO. A downregulation of anti-apoptotic genes such as MAPK and Bcl-2 may play a key role in this mode of cell death. Characterization of these two types of apoptotic cell death regarding the cell cycle regulation and intrcellular signaling will greatly help to understand the mechanisms of radiation-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号