首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cellular ADP-ribosyltransferase, specific for elongation factor 2 (EF-2), is found in extracts from rat liver. Co-migrating with EF-2 throughout purification, this activity is, moreover, located in the protein bands corresponding to EF-2 after native or sodium dodecyl sulfate polyacrylamide gel electrophoresis. The observed activity is thus implicated to be an inherent property of EF-2. Preincubation of EF-2 with GuoPPCH2Pox inhibits endogenous, but not diphtheria toxin catalyzed ADP-ribosylation.  相似文献   

2.
W J Iglewski  H Lee  P Muller 《FEBS letters》1984,173(1):113-118
Fragment A of diphtheria toxin and Pseudomonas toxin A intoxicate cells by ADP-ribosylating the diphthamide residue of elongation factor-2 (EF-2) resulting in an inhibition of protein synthesis [1-3]. A cellular enzyme from polyoma virus transformed baby hamster kidney (pyBHK) cells ADP-ribosylates EF-2 in an identical manner [4]. Here we describe a similar cellular enzyme from beef liver which transfers [adenosine-14C]ADP-ribose from NAD to EF-2. The 14C-label can be removed from the EF-2 by snake venom phosphodiesterase as a soluble product which comigrates with AMP on TLC plates, indicating the 14C-label is present on EF-2 as monomeric units of ADP-ribose. Furthermore, the forward transferase reaction catalyzed by the beef liver ADP-ribosyltransferase is reversible by excess diphtheria toxin fragment A, with the formation of 14C-labeled NAD, indicating that both transferases ADP-ribosylate the same site on the diphthamide residue of EF-2. Thus, beef liver and pyBHK mono(ADP-ribosyl)transferases both modify the diphthamide residue of EF-2, in a manner identical to diphtheria toxin fragment A and Pseudomonas toxin A. These results suggest the cellular enzyme is probably ubiquitous among eukaryotic cells.  相似文献   

3.
Pseudomonas aeruginosa exotoxin A (ETA) is an ADP-ribosyltransferase which inactivates protein synthesis by covalently attaching the ADP-ribose portion of NAD+ onto eucaryotic elongation factor 2 (EF-2). A direct biochemical comparison has been made between ETA and a nonenzymatically active mutant toxin (CRM 66) using highly purified preparations of each protein. The loss of ADP-ribosyltransferase activity and subsequent cytotoxicity have been correlated with the presence of a tyrosine residue in place of a histidine at position 426 in CRM 66. In the native conformation, CRM 66 demonstrated a limited ability (by a factor or at least 100,000) to modify EF-2 covalently and lacked in vitro and in vivo cytotoxicity, yet CRM 66 appeared to be normal with respect to NAD+ binding. Upon activation with urea and dithiothreitol, CRM 66 lost ADP-ribosyltransferase activity entirely yet CRM 66 retained the ability to bind NAD+. Replacement of Tyr-426 with histidine in CRM 66 completely restored cytotoxicity and ADP-ribosyltransferase activity. These results support previous findings from this laboratory (Wozniak, D. J., Hsu, L.-Y., and Galloway, D. R. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8880-8884) which suggest that the His-426 residue of ETA is not involved in NAD+ binding but appears to be associated with the interaction between ETA and EF-2.  相似文献   

4.
Fungi appear to be unique in their requirement for a third soluble translation elongation factor. This factor, designated elongation factor 3 (EF-3), exhibits ribosome-dependent ATPase and GTPase activities that are not intrinsic to the fungal ribosome but are nevertheless essential for translation elongation in vivo. The EF-3 polypeptide has been identified in a wide range of fungal species and the gene encoding EF-3 (YEF3) has been isolated from four fungal species (Saccharomyces cerevisiae, Candida albicans, Candida guillermondii, andPneumocystis carinii). Computer-assisted analysis of the predictedS. cerevisiae EF-3 amino acid sequence was used to identify several potential functional domains; two ATP binding/catalytic domains conserved with equivalent domains in members of the ATP-Binding Cassette (ABC) family of proteins, an aminoterminal region showing significant similarity to theE. coli S5 ribosomal protein, and regions of predicted interaction with rRNA, tRNA, and mRNA. Furthermore, EF-3 was also found to display amino acid similarity to myosin proteins whose cellular function is to provide the motive force of muscle. The identification of these regions provides clues to both the evolution and function of EF-3. The predicted functional regions are conserved among all known fungal EF-3 proteins and a recently described homologue encoded by the Chlorella virus CVK2. We propose that EF-3 may play a role in the ribosomal optimization of the accuracy of fungal protein synthesis by altering the conformation and activity of a ribosomal accuracy center, which is equivalent to the S4-S5-S12 ribosomal protein accuracy center domain of theE. coli ribosome. Furthermore, we suggest that EF-3 represents an evolving ribosomal protein with properties analogous to the intrinsic ATPase activities of higher eukaryotic ribosomes, which has wider implications for the evolutionary divergence of fungi from other eukaryotes. Correspondence to: M.F. Tuite  相似文献   

5.
Translation elongation factor 3: a fungus-specific translation factor?   总被引:1,自引:0,他引:1  
Fungi appear to be unique in their requirement for a third soluble translation elongation factor. This factor, designated elongation factor 3 (EF-3), was first described in the yeast Saccharomycescerevisiae and has subsequently been identified in a wide range of fungal species Including Candida albicans and Schizo-saccharomyces pombe. EF-3 exhibits ribosome-dependent ATPase and GTPase activities that are not intrinsic to the fungal ribosome, but which are essential for translation elongation. Recent studies on the structure of EF-3 from several fungal species have shown that it consists of a repeated domain, with each domain containing the expected putative ATP- and GTP-binding motifs. Overall, EF-3 shows striking amino acid similarity to members of the ATP-binding Cassette (ABC) family of membrane-associated transport proteins although EF-3 is not itself directly membrane-associated. Regions of the EF-3 polypeptide also show structural homology with other translation-associated factors including aminoacyl-tRNA synthetases and the Escherichia coli ribosomal protein S5. While the precise role of EF-3 in the translation elongation cycle remains to be defined, recent evidence suggests that it may be involved in optimizing accuracy during mRNA decoding at the ribosomal A site. Furthermore, the essential nature of EF-3 with respect to the fungal cell indicates that it may be an effective antifungal target. Its apparently ubiquitous occurrence throughout the fungal kingdom also suggests that it may be a useful fungal taxonomic marker.  相似文献   

6.
Anti-[ADP-ribosylated elongation factor 2 (EF-2)] antiserum has been used to immunoprecipitate the modified form of EF-2 from polyoma-virus-transformed baby hamster kidney (pyBHK) cells [Fendrick, J. L. & Iglewski, W. J. (1989) Proc. Natl Acad. Sci. USA 86, 554-557]. This antiserum also immunoprecipitates a 32P-labelled protein of similar size to EF-2 from a variety of primary and continuous cell lines derived from many species of animals. One of these cell lines, chinese hamster ovary CHO-K1 cells was further characterized. The time course of labelling of ADP-ribosylated EF-2 with [32P]orthophosphate was similar in pyBHK cells and in CHO-K1 cells. The kinetics of labelling were more rapid for cells cultured in 2% serum than 10% serum, with incorporation of 32P reaching a maximum at 6 h and 10 h, respectively. EF-2 mutants of pyBHK and CHO-K1 cells resistant to diphtheria-toxin-catalyzed ADP-ribosylation of EF-2 remain sensitive to cellular ADP-ribosylation of EF-2. The 32P-labelled moiety of ADP-ribosylated EF-2 was digested by snake venom phosphodiesterase and the product was identified as AMP. The same 32P-labelled tryptic peptide was modified by toxin in wild-type EF-2 and by the cellular transferase in mutant EF-2. When purified EF-2 from pyBHK cells was incubated with [carbonyl-14C]nicotinamide and diphtheria toxin fragment A, under conditions for reversal of the ADP-ribosylation reaction, [14C]NAD was generated. The results suggest that cellular ADP-ribosylated EF-2 exists in a variety of cell types, and the ribosylated product is identical to that produced by toxin ADP-ribosylation of EF-2, except in diphthamide mutant cells. Studies with the mutant cell lines indicate that the toxin and the cellular transferase, however, recognize different determinants at the ADP-ribose acceptor site in EF-2. The cellular transferase does not require the diphthamide modification of the histidine ring in the amino acid sequence of EF-2 for the transfer of ADP-ribose to the ring. Therefore, we would expect the cellular transferase active site to be similar to, but not identical to, the critical amino acids demonstrated in the active site of diphtheria toxin and Pseudomonas exotoxin A.  相似文献   

7.
Limited proteolysis of Pseudomonas aeruginosa exotoxin A by four proteases (chymotrypsin, Staphylococcal serine proteinase, pepsin A and subtilisin) resulted in the formation of polypeptides having a molecular mass of approximately 25 kDa. They possessed both enzymatic activity and residual antigenicity. Their N-terminal sequence analysis showed that the different proteases cleaved exotoxin A in a very restricted area within domain Ib (amino acids 365-404). As a result, the polypeptides contained a large portion (13-34 amino acids) of domain Ib linked to the adjacent C-terminal domain III (amino acids 405-613). The major fragment derived from subtilisin cleavage, at a final yield of 35% (S-fragment; residues 392-613; 24201 Da; pI 4.7) possessed the same level of ADP-ribosyltransferase activity as uncleaved exotoxin A (by mass), and a 37-fold higher NAD-glycohydrolase activity. Polyclonal antibodies from rabbits against exotoxin A completely inhibited the ADP-ribosyltransferase activity of both exotoxin A and the S-fragment, but not the NAD-glycohydrolase activity of the S-fragment. Antibodies against the S-fragment neutralized the ADP-ribosyltransferase activity of exotoxin A. These data determine the primary proteolytic cleavage site of exotoxin A, suggest that some residues in the amino acid sequence 392-404 of exotoxin A seem to have a role in binding or positioning elongation factor 2 (EF-2) and show that antibodies recognize the EF-2-binding site but not the NAD(+)-binding site.  相似文献   

8.
Eukaryotic polypeptide elongation factor EF-1 is not only a major translational factor, but also one of the most important multifunctional (moonlighting) proteins. EF-1 consists of four different subunits collectively termed EF-1alphabeta beta'gamma and EF-1alphabeta gammadelta in plants and animals, respectively. EF-1alpha x GTP catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome. EF-1beta beta'gamma (EF-1beta and EF-1beta'), catalyzes GDP/GTP exchange on EF-1alpha x GDP to regenerate EF-1alpha x GTP. EF-1gamma has recently been shown to have glutathione S-transferase activity. EF-2 catalyzes the translocation of peptidyl-tRNA from the A-site to the P-site on the ribosome. Recently, molecular mimicry among tRNA, elongation factors, releasing factor (RF), and ribosome recycling factor (RRF) has been demonstrated and greatly improved our understanding of the mechanism of translation. Moreover, eukaryotic elongation factors have been shown to be concerned or likely to be concerned in various important cellular processes or serious diseases, including translational control, signal transduction, cytoskeletal organization, apoptosis, adult atopic dermatitis, oncogenic transformation, nutrition, and nuclear processes such as RNA synthesis and mitosis. This article aims to overview the recent advances in protein biosynthesis, concentrating on the moonlighting functions of EF-1.  相似文献   

9.
The guanine nucleotide exchange factor, elongation factor 1 beta gamma (EF-1 beta gamma) has been purified from Artemia cysts using an improved method. The protein consists of two distinct polypeptides with relative molecular masses of 26,000 (EF-1 beta) and 46,000 (EF-1 gamma). A nucleoside diphosphate phosphotransferase activity often found in EF-1 beta gamma preparations has been completely separated from the actual guanine nucleotide exchange stimulatory activity of EF-1 beta gamma, thus indicating that nucleotide diphosphate phosphotransferase is not an intrinsic property of EF-1 beta. Both EF-1 beta gamma and EF-1 beta have been shown to stimulate the following three reactions to a comparable degree: (a) exchange of GDP bound to EF-1 alpha with exogenous GDP; (b) EF-1 alpha-dependent binding of Phe-tRNA to ribosomes; (c) poly(U)-dependent poly(phenylalanine) synthesis. However, a significantly higher nucleotide exchange rate was observed in the presence of EF-1 beta gamma compared to EF-1 beta alone. Concerning elongation factor 1 gamma (EF-1 gamma) the following observations were made. In contrast to EF-1 beta, pure EF-1 gamma is rather insoluble in aqueous buffers, but the tendency to precipitate can be partially suppressed by the addition of detergents. In particular, EF-1 gamma partitions solely into the detergent phase of Triton X-114 solutions. EF-1 gamma is also more susceptible to spontaneous, specific fragmentation. It is remarkably that about 5% of the cellular pool of EF-1 beta gamma was found to be present in membrane fractions, under conditions where no EF-1 alpha was detectable in these fractions. Furthermore it was noted that EF-1 beta gamma copurified strongly with tubulin on DEAE-cellulose. Moreover, it was observed that from a mixture of EF-1 beta gamma and tubulin, EF-1 gamma coprecipitates with tubulin using a non-denaturating immunoprecipitation technique. These findings suggest that EF-1 gamma has a hydrophobic domain and interacts with membrane and cytoskeleton structures in the cell.  相似文献   

10.
Elongation factor 2 (EF-2) has been recently shown to be extensively phosphorylated in a Ca2+/calmodulin-dependent manner in extracts of mammalian cells (A. G. Ryazanov (1987) FEBS Lett. 214, 331-334). In the present study, we partially purified the protein kinase which phosphorylates EF-2 from rabbit reticulocytes. The molecular weight of the enzyme determined by gel filtration was about 140,000. Unlike the substrate, the EF-2 kinase had no affinity for RNA and therefore could be separated from EF-2 by chromatography on RNA-Sepharose. After chromatography on hydroxyapatite, the kinase activity became calmodulin-dependent. Two-dimensional separation of the phosphorylated EF-2 according to O'Farrell's technique revealed that there were two phosphorylation sites within the EF-2 molecule; in both cases, the phosphorylated amino acid was threonine. The EF-2 kinase differed from the four known types of Ca2+/calmodulin-dependent protein kinases. Thus, the system of EF-2 phosphorylation represents the novel (fifth) Ca2+/calmodulin-dependent system of protein phosphorylation. This system is supposed to be responsible for the regulation of the elongation rate of protein biosynthesis in eukaryotic cells.  相似文献   

11.
12.
M Lukac  R J Collier 《Biochemistry》1988,27(20):7629-7632
Directed mutagenesis was used to probe the functions of Tyr-470 and Tyr-481 of Pseudomonas aeruginosa exotoxin A (ETA) with respect to cytotoxicity, ADP-ribosylation of elongation factor 2 (EF-2), and NAD-glycohydrolase activity. Both of these residues lie in the active site cleft, close to Glu-553, a residue believed to play a direct role in catalysis of ADP-ribosylation of EF-2. Substitution of Tyr-470 with Phe caused no change in any of these activities, thus eliminating the possibility that the phenolic hydroxyl group of Tyr-470 might be directly involved in catalysis. Mutation of Tyr-481 to Phe caused an approximately 10-fold reduction in NAD:EF-2 ADP-ribosyltransferase activity and cytotoxicity but no change in NAD-glycohydrolase activity. The latter mutation did not alter the KM of NAD in the NAD-glycohydrolase reaction, which suggests that the phenolic hydroxyl of Tyr-481 does not participate in NAD binding. We hypothesize that the phenolic hydroxyl of Tyr-481 may be involved in the interaction of the toxin with substrate EF-2.  相似文献   

13.
Diphtheria toxin catalyzes the ADP-ribosylation of elongation factor 2 (EF-2) in eukaryotes and archaebacteria. As the reaction is strictly EF-2 specific and introduces two negative charges into the molecule, the resulting shift in the isoelectric point (pI) by 0.2 pH units was used to establish a new purification method for EF-2 from Sulfolobus acidocaldarius. The cells were lysed with dithiothreitol at pH 9 and EF-2 was purified by ammonium sulfate precipitation, gel filtration on Sephadex G-200, and three isoelectric focusing steps. The EF-2-containing fractions from the first isoelectric focusing step at pH 4-9 were refocused in a more narrow pH-gradient (pH 5-7). The EF-2 peak from the second step was eluted, collecting only the fractions above the pH region where ADP-ribosylated EF-2 would focus. The EF-2 was then ADP-ribosylated with diphtheria toxin and NAD and subjected to further isoelectric focusing (pH 5-7). The EF-2 was almost homogeneous since ADP-ribosylation had shifted it into a region of the pH gradient free of contaminating proteins. Diphtheria toxin was immobilized on CNBr-activated Sepharose to prevent a possible contamination by proteins from the diphtheria toxin preparation which might have the same pI as ADP-ribosylated EF-2. Finally, the ADP-ribosyl group was removed by equilibrium dialysis using diphtheria toxin and nicotinamide at pH 6.3. The obtained EF-2 was active in protein synthesis.  相似文献   

14.
15.
A low molecular weight form of the eukaryotic polypeptide chain elongation factor 1 (EF-1α) has been extensively purified from pig liver to give an apparently homogeneous preparation, which seemed to be analogous to the bacterial elongation factor, EF-Tu (Iwasaki, K., Nagata, S., Mizumoto, K., and Kaziro, Y. (1974) J. Biol. Chem. 249, 5008). Thus, the interaction of the purified EF-1α with guanine nucleotides as well as aminoacyl-tRNA has been investigated and the following results have been obtained. (1) EF-1α when kept in the absence of glycerol lost its activity to promote the binding of aminoacylt-RNA to ribosomes though it retained the ability to bind guanine nucleotides. However, the former activity could be stabilized by the addition of 25% (vv) glycerol to the solution. (2) EF-1α formed a binary complex with guanine nucleotides such as GTP, GDP, 5′-guanylyl methylenediphosphonate or 5′-guanylyl imidodiphosphate. The molar ratio of EF-1α to GTP or GDP in the binary complex was shown to be 1. (3) The presence of a ternary complex containing EF-1α, GTP and aminoacyl-tRNA was demonstrated by several methods, i.e., (i) an increased heat stability of EF-1α in the presence of GTP and Phe-tRNA, (ii) a decrease in the amount of the EF-1α·GTP complex in the presence of aminoacyl-tRNA, (iii) a protection of the ester linkage of Phe-tRNA from hydrolysis at alkaline pH by the presence of both EF-1α and GTP, and (iv) the isolation of the complex by gel filtration.  相似文献   

16.
Summary A restriction fragment enrichment procedure was devised for the identification and cloning of the gene for protein synthesis elongation factor Tu (EF-Tu) from Methanococcus vannielii, employing hybridisation with an internal tufB gene probe from Escherichia coli. Methanococcus contains a single tuf gene on its chromosome; it is expressed in E. coli and it codes for a polypeptide of 46.5 kDa. The overall architecture of the protein bears a striking resemblance to that of eukaryotic elongation factor 1 (EF-1). The close similarity to EF-1 is supported by the sequence homology values which are in the range of 34% to 35% with eubacterial, plastid and mitochondrial EF-Tu sequences and as high as 52% to 54% with those from eukaryotic EF-1.  相似文献   

17.
Topical application of the phorbol ester TPA to mouse skin causes an increase in the amount of elongation factor 2 (EF-2), a factor in eukaryotic protein synthesis, in the epidermal cytosol (2- to 3-fold) and particulate fraction (7-fold). Furthermore, as a consequence of this TPA treatment the activity of an epidermal EF-2 phosphatase is stimulated. The EF-2 phosphatase has an apparent molecular weight of around 38,000 daltons. The enzyme activity is induced as early as 45 minutes after TPA treatment and remains at the elevated level for more than 17 hours. Both of the TPA-induced effects result in an increase in unphosphorylated, i.e. active EF-2 and can be suppressed by cyclosporine A.  相似文献   

18.
19.
Protein synthesis elongation factor 2 (EF-2) from all archaebacteria so far analysed, is susceptible to inactivation by diphtheria toxin, a property which it shares with EF-2 from the eukaryotic 8OS translation system. To resolve the structural basis of diphtheria toxin susceptibility, the structural gene for the EF-2 from an archaebacterium, Methanococcus vannielii, was cloned and its nucleotide sequence determined. It was found that (i) this gene is closely linked to that coding for elongation factor 1 alpha-(EF-1 alpha), (ii) the size of the gene product, as derived from the nucleotide sequence, lies between those for EF-2 from eukaryotes and eubacteria, (iii) it displays a higher sequence similarity to eukaryotic EF-2 than to eubacterial homologues, and (iv) the histidine residue which is modified to diphthamide and then ADP-ribosylated by diphtheria toxin is present in a sequence context similar to that of eukaryotic EF-2 but it is not conserved in eubacterial EF-G. The EF-2 gene from Methanococcus is expressed in transformed Saccharomyces cerevisiae but is not ADP-ribosylated by diphtheria toxin. This indicates that the Saccharomyces enzyme system is unable to post-translationally convert the respective histidine residue from the Methanococcus EF-2 into diphthamide.  相似文献   

20.
《FEBS letters》1986,208(1):77-83
cDNA complementary to mRNA coding for the elongation factor EF-1β has been cloned. A γgt 11 cDNA library has been screened with an antiserum against EF-1β which exchanges GDP bound to EF-1α with exogenous GTP during protein synthesis. The derived amino acid sequence corresponds to 208 amino acids including the N-terminal methionine which is absent in the mature protein. About sixty percent of the protein was sequenced by direct protein sequence analysis. Comparison of Artemis salina EF-1β with Escherichia coli EF-Ts shows no evident homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号