首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
B H White  J B Cohen 《Biochemistry》1988,27(24):8741-8751
The hydrophobic, photoactivatable probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to label acetylcholine receptor rich membranes purified from Torpedo californica electric organ. All four subunits of the acetylcholine receptor (AChR) were found to incorporate label, with the gamma-subunit incorporating approximately 4 times as much as each of the other subunits. Carbamylcholine, an agonist, and histrionicotoxin, a noncompetitive antagonist, both strongly inhibited labeling of all AChR subunits in a specific and dose-dependent manner. In contrast, the competitive antagonist alpha-bungarotoxin and the noncompetitive antagonist phencyclidine had only modest effects on [125I]TID labeling of the AChR. The regions of the AChR alpha-subunit that incorporate [125I]TID were mapped by Staphylococcus aureus V8 protease digestion. The carbamylcholine-sensitive site of labeling was localized to a 20-kDa V8 cleavage fragment that begins at Ser-173 and is of sufficient length to contain the three hydrophobic regions M1, M2, and M3. A 10-kDa fragment beginning at Asn-339 and containing the hydrophobic region M4 also incorporated [125I]TID but in a carbamylcholine-insensitive manner. Two further cleavage fragments, which together span about one-third of the alpha-subunit amino terminus, incorporated no detectable [125I]TID. The mapping results place constraints on suggested models of AChR subunit topology.  相似文献   

2.
Studies of the metabolism and distribution of lung surfactant are aided by use of radiolabeled surfactant or surfactant components. These studies have often made use of [3H]- or [14C]phosphatidylcholine. Analysis of the lung content of surfactant containing these beta-emitting labels usually requires tissue digestion, use of scintillation fluids, and significant correction for quenching of photon production. Because use of a gamma-emitting isotope would obviate these requirements, we have investigated the use of 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID), a lipophilic photoactivatable compound, to radiolabel pulmonary surfactant. Our results indicate that, during photoactivation, products of [125I]TID are produced that result in radiolabeling of both the lipid and protein components of extracted porcine surfactant. Separation of radiolabeled surfactant from hydrophobic nonlabelling photolysis products was accomplished by gel chromatography. Exposure of surfactant (34 mumol/ml) to [125I]TID under labeling conditions resulted in incorporation of 45.3 +/- 5.1% of the radiolabel. Incorporation of radiolabel in the various phospholipids of lung surfactant was approximately equivalent. Lipophilic surfactant apoproteins were also radiolabeled. Finally, both in vitro and in vivo testing of radiolabeled surfactant (0.1 microCi/mg) revealed full retention of surface tension lowering ability.  相似文献   

3.
Using an acetylcholine-derivatized affinity column, we have purified human alpha4beta2 neuronal nicotinic acetylcholine receptors (nAChRs) from a stably transfected HEK-293 cell line. Both the quantity and the quality of the purified receptor are suitable for applying biochemical methods to directly study the structure of the alpha4beta2 nAChR. In this first study, the lipid-protein interface of purified and lipid-reconstituted alpha4beta2 nAChRs was directly examined using photoaffinity labeling with the hydrophobic probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID photoincorporated into both alpha4 and beta2 subunits, and for each subunit the labeling was initially mapped to fragments containing the M4 and M1-M3 transmembrane segments. For both the alpha4 and beta2 subunits, approximately 60% of the total labeling was localized within fragments that contain the M4 segment, which suggests that the M4 segment has the greatest exposure to lipid. Within M4 segments, [125I]TID labeled homologous amino acids alpha4-Cys582/beta2-Cys445, which are also homologous to the [125I]TID-labeled residues alpha1-Cys418 and beta1-Cys447 in the lipid-exposed face of Torpedo nAChR alpha1M4 and beta1M4, respectively. Within the alpha4M1 segment, [125I]TID labeled residues Cys226 and Cys231, which correspond to the [125I]TID-labeled residues Cys222 and Phe227 at the lipid-exposed face of the Torpedo alpha1M1 segment. In beta2M1, [125I]TID labeled beta2-Cys220, which is homologous to alpha4-Cys226. We conclude from these studies that the alpha4beta2 nAChR can be purified from stably transfected HEK-293 cells in sufficient quantity and purity for structural studies and that the lipid-protein interfaces of the neuronal alpha4beta2 nAChR and the Torpedo nAChR display a high degree of structural homology.  相似文献   

4.
The membrane-permeable photoactivatable reagent 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine was used to selectively label the hydrophobic domain of the amphipathic form of gamma-glutamyl transpeptidase reconstituted into phosphatidylcholine vesicles. The reagent labels only a limited segment of the large subunit of the heterodimeric transpeptidase. Treatment of labeled and reconstituted enzyme with papain causes the release of the unlabeled catalytic domain and the cleavage of the membrane binding domain into two discrete 125I-labeled peptides. The hydrophobic peptides which remain associated with the vesicles were isolated by chromatography on Sephadex LH-60. They exhibit apparent molecular weights of 8700 and 3400. Amino acid analysis indicates that they contain 68 and 58% hydrophobic residues, respectively. The procedures developed in this study should make possible the large scale isolation of the unlabeled membrane binding domain of gamma-glutamyl transpeptidase.  相似文献   

5.
We have shown previously that the lipophilic photoreagent 3-(trifluoromethyl)3-m-([125I]iodophenyl)-diazirine ([125I]TID) photolabels all four subunits of the Torpedo nicotinic acetylcholine receptor (AChR) and that greater than 70% of this photoincorporation is inhibited by cholinergic agonists and some noncompetitive antagonists, including histrionicotoxin (HTX), but not phencyclidine (PCP; White, B.H., and Cohen, J.B. (1988) Biochemistry 27, 8741-8751). We have now examined the effects of nonradioactive TID on (a) AChR photoincorporation of [125I]TID, (b) AChR-mediated ion transport, and (c) AChR binding of several cholinergic ligands. We find that TID inhibits [125I]TID photoincorporation into the AChR to the same extent as carbamylcholine. The saturable component of [125I]TID photolabeling is half-maximal at 4 microM [125I]TID with 0.5 mol specifically incorporated per mol of AChR after 30 min photolysis with 60 microM [125I]TID. Repeated labeling of membranes at a fixed [125I]TID concentration gave results consistent with a maximal incorporation of one [125I]TID molecule per AChR. Nonradioactive TID also noncompetitively inhibits agonist-stimulated 22Na+ efflux from Torpedo vesicles with an IC50 of 1 microM. Furthermore, TID inhibits allosterically the binding of [3H]HTX, decreasing its affinity for the AChR 5-fold both in the presence and absence of agonist. In contrast, TID has little effect on [3H]PCP binding in the absence of agonist but completely inhibits it in the presence of agonist. TID enhances the cooperativity of [3H]nicotine binding. [125I]TID is thus a photoaffinity label for a novel noncompetitive antagonist binding site on the AChR that is linked allosterically to the binding sites of both agonists and other noncompetitive antagonists. The [125I]TID site is presumably located within the central pore of the AChR.  相似文献   

6.
Hepatic microsomes isolated from untreated male rats or from rats pretreated with phenobarbital (PB) or 3-methylcholanthrene (3-MC) were labeled with the hydrophobic, photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID incorporation into 3-MC- and PB-induced liver microsomal protein was enhanced 5- and 8-fold, respectively, relative to the incorporation of [125I]TID into uninduced liver microsomes. The major hepatic microsomal cytochrome P-450 forms inducible by PB and 3-MC, respectively designated P-450s PB-4 and BNF-B, were shown to be the principal polypeptides labeled by [125I]TID in the correspondingly induced microsomes. Trypsin cleavage of [125I]TID-labeled microsomal P-450 PB-4 yielded several radiolabeled fragments, with a single labeled peptide of Mr approximately 4000 resistant to extensive proteolytic digestion. The following experiments suggested that TID binds to the substrate-binding site of P-450 PB-4. [125I]TID incorporation into microsomal P-450 PB-4 was inhibited in a dose-dependent manner by the P-450 PB-4 substrate benzphetamine. In the absence of photoactivation, TID inhibited competitively about 80% of the cytochrome P-450-dependent 7-ethoxycoumarin O-deethylation catalyzed by PB-induced microsomes with a Ki of 10 microM; TID was a markedly less effective inhibitor of the corresponding activity catalyzed by microsomes isolated from uninduced or beta-naphthoflavone-induced livers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In an effort to radiolabel antibodies, N-(m-[125I]iodophenyl)maleimide (m-[125I]IPM) was prepared by the demetallation of an N-[m-tri-(n-butyl)stannylphenyl]maleimide intermediate. The unlabeled intermediate was synthesized in ⩾ 75% yield using a palladium catalyzed reaction of hexabutylditin with m-bromoaniline, followed by reaction with maleic anhydride and ring annulation. All products were confirmed by NMR and elemental analysis. Labeling with 125I was carried out in a biphasic mixture containing chloramine-T (radiochemical yield ⩾ 70%). Rabbit IgG modified with the heterobifunctional crosslinking agent N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) and bovine serum albumin were conjugated with m-[125I]IPM (yield: 40 and 80%, respectively). In addition, m-[125I]IPM was conjugated to rabbit IgG subunits (HL) in 70% yield. The in vitro stability of the radiolabeled proteins in serum showed < 1% deiodination over 24 h.  相似文献   

8.
A new heterobifunctional reagent, N-(3-(p-azido-m-iodophenyl)propionyl)-succinimide (AIPPS), was synthesized and chemically characterized. The radiochemical form of the reagent, [125I]AIPPS, should be of general use as a photoactive reagent for the derivatization of free amino groups on a large variety of biologically active compounds, including many hormones. Amino-containing ligands can be derivatized with [125I]AIPPS in a method which is similar to that used for the 125I-labeled Bolton-Hunter reagent (N-(3-(p-hydroxyphenyl)propionyl)-succinimide). The added advantage with [125I]AIPPS, however, is that the ligand derivative is made both photoactive and radioactive in a single step. As an example of how this reagent can be used, we have prepared carrier-free [125I]AIPPS and reacted it with the amino-containing cardiac glycoside, 4-amino-4,6-dideoxyglucosyl digitoxigenin (GluD). The radioiodinated cardiac glycoside, [125I]AIPP-GluD, was purified by thin-layer chromatography and was carrier-free with a specific radioactivity of 2175 Ci/mmol. [125I]AIPP-GluD was an effective photoaffinity label for Na,K-ATPase as shown by specific photoaffinity labeling of purified canine kidney enzyme and human erythrocyte enzyme.  相似文献   

9.
Previously we reported the dissociative binding of biotinylamidoethyl-3-(4-hydroxy-3-[125I]iodophenyl)propionamide to avidin [Garlick & Giese (1988) J. Biol. Chem. 263, 210-215]. In the present paper we report the corresponding binding of the alpha- and beta-sulphoxides of this parent compound to avidin. The 1:1 complex (obtained with avidin in excess) of the alpha-sulphoxide derivative with avidin has a dissociation half-life (t1/2) of 25 days, only 1.6 times as fast as the parent compound (t1/2 41 days). However, the corresponding beta-sulphoxide dissociates 446 times faster (t1/2 0.092 day) than the parent compound, this apparently being due to a steric effect. The alpha-sulphoxide is attractive as a tracer reagent to facilitate studies and applications of the avidin-biotin system.  相似文献   

10.
11.
12.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent transporter of structurally diverse organic anion conjugates. The protein also actively transports a number of non-conjugated chemotherapeutic drugs and certain anionic conjugates by a presently poorly understood GSH-dependent mechanism. LY475776is a newly developed (125)I-labeled azido tricyclic isoxazole that binds toMRP1 with high affinity and specificity in a GSH-dependent manner. The compound has also been shown to photolabel a site in the COOH-proximal region of MRP1's third membrane spanning domain (MSD). It is presently not known where GSH interacts with the protein. Here, we demonstrate that the photactivateable GSH derivative azidophenacyl-GSH can substitute functionally for GSH in supporting the photolabeling of MRP1 by LY475776 and the transport of another GSH-dependent substrate, estrone 3-sulfate. In contrast to LY475776, azidophenacyl-[(35)S] photolabels both halves of the protein. Photolabeling of the COOH-proximal site can be markedly stimulated by low concentrations of estrone 3-sulfate, suggestive of cooperativity between the binding of these two compounds. We show that photolabeling of the COOH-proximal site by LY475776 and the labeling of both NH(2)- and COOH- proximal sites by azidophenacyl-GSH requires the cytoplasmic linker (CL3) region connecting the first and second MSDs of the protein, but not the first MSD itself. Although required for binding, CL3 is not photolabeled by azidophenacyl-GSH. Finally, we identify non-conserved amino acids in the third MSD that contribute to the high affinity with which LY475776 binds to MRP1.  相似文献   

13.
Myelin basic protein (MBP) is thought to be responsible for adhesion of the intracellular surfaces of compact myelin to give the major dense line. The 17 and 21.5 kDa isoforms containing exon II have been reported by others to localize to the cytoplasm and nucleus of murine oligodendrocytes and HeLa cells while the 14 and 18.5 kDa isoforms lacking exon II are confined to the plasma membrane. However, we show that the exon II(-) 18.5 kDa form and a recombinant exon II(+) 21.5 kDa isoform both caused similar aggregation of acidic lipid vesicles, indicating that they should have similar abilities to bind to the intracellular lipid surface of the plasma membrane and to cause adhesion of those surfaces to each other. The circular dichroism spectra of the two isoforms indicated that both had a similar secondary structure. Thus, both isoforms should be able to bind to and cause adhesion of the cytosolic surfaces of compact myelin. The fact that they do not could be due to differences in post-translational modification in vivo, trafficking through the cell and/or subcellular location of synthesis, but it is not due to differences in their lipid binding.  相似文献   

14.
A new hydrophobic heterobifunctional photocrosslinking reagent 3-(trifluoromethyl)-3-(m-isothiocyanophenyl)diazirine (TRIMID), a carbene precursor, and its radioiodinated analogue [125I]TRIMID, have been synthesized and chemically characterized. The reagents were applied for membrane protein modification in human erythrocyte membranes and purple membranes fromHalobacterium halobium. Covalent labeling of the anion transport protein (band 3) via the isothiocyanate function was confirmed. Radiolabeled TRIMID was detected in at least two thermolysin-generated transmembrane fragments of the anion transport protein, and half-maximal inhibition of the erythrocyte anion transport activity was attained with 2.2 mM reagent. In bacteriorhodopsin (BR), a common binding site for the monofunctional phenylisothiocyanate and the bifunctional crosslinking reagent was identified: preincubation of purple membranes with TRIMID suppressed phenylisothio-[14C]-cyanate binding to BR. [125I]TRIMID was recovered in V-1, the N-terminal segment of BR, which includes the phenylisothiocyanate binding site Lys-41. Light-induced intramolecular crosslinking of band 3-derived thermolytic fragments was not observed, although the carbene was generatedin situ and photocrosslinking of the protease V8 fragments of BR was not detected. Chemical and physicochemical characteristics of the new reagent are discussed with regard to limitations imposed for photoinduced site-directed crosslink formation.  相似文献   

15.
Myelin basic protein (MBP) is an intrinsically disordered protein and in the central nervous system (CNS) mainly responsible for connecting the cytoplasmic surfaces of the multilamellar, compact myelin. Increased posttranslational modification of MBP is linked to both, the natural development (from adolescent to adult brains) of myelin, and features of multiple sclerosis. Here, we study how a combination of this intrinsically disordered myelin protein with varying the natural cholesterol content may alter the characteristics of myelin-like membranes and interactions between these membranes. Large unilamellar vesicles (LUVs) with a composition mimicking the cytoplasmic leaflet of myelin were chosen as the model system, in which different parameters contributing to the interactions between the lipid membrane and MBP were investigated. While we use cryo-transmission electron microscopy (TEM) for imaging, dynamic light scattering (DLS) and electrophoretic measurements through continuously-monitored phase-analysis light scattering (cmPALS) were used for a more global overview of particle size and charge, and electron paramagnetic resonance (EPR) spectroscopy was utilized for local behavior of lipids in the vesicles' membranes in aqueous solution. The cholesterol content was varied from 060 % in these LUVs and measurements were performed in the presence and absence of MBP. We find that the composition of the lipid layers is relevant to the interaction with MBP. Not only the size, the shape and the aggregation behavior of the vesicles depend on the cholesterol content, but also within each membrane, cholesterol's freedom of movement, its environmental polarity and its distribution were found to depend on the content using the EPR-active spin-labeled cholesterol (CSOSL). In addition, DLS and EPR measurements probing the transition temperatures of the lipid phases allow a correlation of specific behavior with the human body temperature of 37 °C. Overall, our results aid in understanding the importance of the native cholesterol content in the healthy myelin membrane, which serves as the basis for stable and optimum protein-bilayer interactions. Although studied in this specific myelin-like system, from a more general and materials science-oriented point of view, we could establish how membrane and vesicle properties depend on cholesterol and/or MBP content, which might be useful generally when specific membrane and vesicle characteristics are sought for.  相似文献   

16.
We have previously reported that the covalent attachment of phosphoinositides to myelin basic protein (MBP) occurs both in vivo and in vitro [Smith, R. A. et al. (1986) Biochemistry 25:2677-2681; Biochemistry 25:2682-2686; and Biochem. Biophys. Res. Comm. 316:426-432]. Phosphoinositidation of MBP was also detected when [32P] phosphoinositides were incubated with myelin pretreated with Triton X-100 and EGTA. Less than 10% of this covalent linkage of phosphoinositides to MBP survived after acidic treatment (0.1 N HCl at 37 degrees C for 10 min). MBP is predicted to lack sufficient hydrophobicity to bind to membranes as shown by analysis of its amino acid sequence for hydrophobic regions and thus its phosphoinositidation may provide an anchor for this purpose.  相似文献   

17.
18.
The localization of proteins in myelin was studied by the use of a non-penetrating penetrating reagent. Tritiated 4,4′-diisothiocyano-2,2′-ditritiostilbene disulfonic acid was used to label the isolated myelin membrane. The membrane was labelled, the basic protein and the hydrophobic protein, lipophilin, were isolated. After 10 min of exposure to the reagent, the specific activity of lipophilin was found to be 10 times greater than that of the basic protein. Water shock did not alter the specific activities. However, sonication increased the specific activity of lipophilin but not that of basic protein. When the isolated proteins were labelled with 3H-labelled, 4,4′-diisothiocyano-2,2′-ditritiostilbene disulfonic acid, the specific activity of the basic protein was 10 times that of lipophilin. We concluded that the low specific activity of basic protein isolated from the labelled membrane was due to the inaccessible position of this protein in the membrane bilayer.  相似文献   

19.
Differentiating 3T3-L1 cells have been used to investigate the process of fatty acid uptake, its cellular specificity, and the involvement of cytoplasmic carrier proteins. The profile of fatty acid uptake in both differentiated and undifferentiated cells was biphasic, consisting of an initial rapid phase (0-20 s) followed by a second slower phase (60-480 s). In both cell types the initial phase of fatty acid (FA) uptake was temperature-insensitive whereas the rate of uptake during the second phase decreased 4-fold when measurements were made at 4 degrees C. The rate of [9,10-3H]oleate uptake in 3T3-L1 adipocytes was 10-fold greater than in the fibroblastic precursor cells. The acquisition of a differentially expressed cytoplasmic fatty acid binding protein (adipocyte lipid binding protein (ALBP] occurs coincident with the increased ability of these cells to take up FAs. Uptake experiments with 3-[125I]iodo-4-azido-N-hexadecylsalicylamide demonstrated that this photoactivatable FA analogue accumulated intracellularly in a time-, temperature-, and cell-specific fashion. Moreover, when 3T3-L1 adipocytes were presented with 3-[125I]iodo-4-azido-N-hexadecylsalicylamide and then irradiated, a single cytoplasmic 15-kDa protein was labeled. The in situ-labeled 15-kDa protein was identified as ALBP by its ability to be immunoprecipitated with anti-ALBP antisera. Taken together these results indicate that fatty acids traverse the plasma membrane and are bound by ALBP in the cytoplasmic compartment. It is likely that lipid uptake in other cell systems, such as liver, heart, intestine, and nerve tissue, proceeds by a similar process and that this represents a general mechanism for cell-specific FA uptake and utilization.  相似文献   

20.
The C-terminal half of the bovine myelin basic protein, peptide 89-169, was treated with BNPS-skatole [2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine], and the products were isolated by repeated gel filtration through Sephadex G-50. They consisted of uncleaved peptide 89-169 in which approximately 30% of the tyrosine had been monobrominated and the tryptophan converted to oxindolealanine, peptide 116-169 modified by partial bromination (30%) of the tyrosine, and two chromatographic forms of peptide 89-115. The major form contained the lactone of dioxindolealanine at the C terminus; the minor form contained the uncyclized oxidation product. Each form of peptide 89-115 was resolved into several components by electrophoresis in polyacrylamide gels (10%, w/w) containing 1 M acetic acid and 8 M urea. The presence of three of these components could be explained by partial deamidation of Asn-91 and Gln-102. Studies on the oxidation of tryptophan-containing model peptides by BNPS-skatole indicated that the reaction can also include partial bromination of the dioxindole and its lactone and partial cleavage at the amino peptide bond of the tryptophan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号