首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present here in silico studies on antiviral drug resistance due to a novel mutation of influenza A/H1N1 neuraminidase (NA) protein. Influenza A/H1N1 virus was responsible for a recent pandemic and is currently circulating among the seasonal influenza strains. M2 and NA are the two major viral proteins related to pathogenesis in humans and have been targeted for drug designing. Among them, NA is preferred because the ligand-binding site of NA is highly conserved between different strains of influenza virus. Different mutations of the NA active site residues leading to drug resistance or susceptibility of the virus were studied earlier. We report here a novel mutation (S247R) in the NA protein that was sequenced earlier from the nasopharyngeal swab from Sri Lanka and Thailand in the year 2009 and 2011, respectively. Another mutation (S247N) was already known to confer resistance to oseltamivir. We did a comparative study of these two mutations vis-a-vis the drug-sensitive wild type NA to understand the mechanism of drug resistance of S247N and to predict the probability of the novel S247R mutation to become resistant to the currently available drugs, oseltamivir and zanamivir. We performed molecular docking- and molecular dynamics-based analysis of both the mutant proteins and showed that mutation of S247R affects drug binding to the protein by positional displacement due to altered active site cavity architecture, which in turn reduces the affinity of the drug molecules to the NA active site. Our analysis shows that S247R may have high probability of being resistant.  相似文献   

2.
In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the K(M) of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the K(M) observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I.  相似文献   

3.
In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the KM of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the KM observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I.  相似文献   

4.
5.
6.
To detect point mutations A2115C, A2143G/C, and A2143G in the 23S rRNA gene of Helicobacter pylori associated with resistance of the microorganism to clarithromycin, a new powerful way of analysis was used. This method involved the reaction of minisequencing followed by MALDI-TOF mass spectrometry of reaction products. In ten analyzed clarithromycin-resistant clinical isolates of H. pylori obtained in Russia, the resistance was found to be mediated only by mutation A2144G in the 23S rRNA gene.  相似文献   

7.
A single-gene nuclear mutant has been selected from the yeast Schizosaccharomyces pombe for growth resistance to Dio-9, a plasma membrane H+-ATPase inhibitor. From this mutant, called pma1, an ATPase activity has been purified. It contains a Mr = 100,000 major polypeptide which is phosphorylated by [gamma-32P] ATP. Proton pumping is not impaired since the isolated mutant ATPase is able, in reconstituted proteoliposomes, to quench the fluorescence of the delta pH probe 9-amino-6-chloro-2-methoxy acridine. The isolated mutant ATPase is sensitive to Dio-9 as well as to seven other plasma membrane H+-ATPase inhibitors. The mutant H+-ATPase activity tested in vitro is, however, insensitive to vanadate. Its Km for MgATP is modified and its ATPase specific activity is decreased. The pma1 mutation decreases the rate of extracellular acidification induced by glucose when cells are incubated at pH 4.5 under nongrowing conditions. During growth, the intracellular mutant pH is more acid than the wild type one. The derepression by ammonia starvation of methionine transport is decreased in the mutant. The growth rate of pma1 mutants is reduced in minimal medium compared to rich medium, especially when combined to an auxotrophic mutation. It is concluded that the H+-ATPase activity from yeast plasma membranes controls the intracellular pH as well as the derepression of amino acid, purine, and pyrimidine uptakes. The pma1 mutation modifies several transport properties of the cells including those responsible for the uptake of Dio-9 and other inhibitors (Ulaszewski, S., Coddington, A., and Goffeau, A. (1986) Curr. Genet. 10, 359-364).  相似文献   

8.
Newborn screening for biotinidase deficiency has identified children with profound biotinidase deficiency (<10% of mean normal serum activity) and those with partial biotinidase deficiency (10%–30% of mean normal serum activity). Children with partial biotinidase deficiency and who are not treated with biotin do not usually exhibit symptoms unless they are stressed (i.e., prolonged infection). We found that 18 of 19 randomly selected individuals with partial deficiency have the transversion missense mutation G1330>C, which substitutes a histidine for aspartic acid444 (D444H) in one allele of the biotinidase gene. We have previously estimated that the D444H mutation results in 48% of normal enzyme activity for that allele and occurs with an estimated frequency of 0.039 in the general population. The D444H mutation in biotinidase deficiency is similar to the Duarte variant in galactosemia. The D444H mutation in one allele in combination with a mutation for profound deficiency in the other allele is the common cause of partial biotinidase deficiency. Received: 8 December 1997 / Accepted: 22 January 1998  相似文献   

9.
10.
Abnormal beta-hexosaminidase alpha chain mRNAs from an Ashkenazi Jewish patient with the classical infantile Tay-Sachs disease contained intact or truncated intron 12 sequences. Sequence analysis showed a single nucleotide transversion at the 5' donor site of intron 12 from the normal G to C. This provides the first evidence that this junctional mutation, also found independently in two other laboratories by analysis of genomic clones, results in functional abnormality. Analysis with normal and mutant oligonucleotides as probes indicated that our patient was a compound heterozygote with only one allele having the transversion. The patient studied in the other two laboratories was also a compound heterozygote. Another Ashkenazi Jewish patient was normal in this region in both alleles. Thus, the splicing defect is the underlying genetic cause in some but not all Ashkenazi Jewish patients with Tay-Sachs disease.  相似文献   

11.
12.
We report here the clinical, genetic and molecular characterization of a large Han Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. The penetrance of hearing loss (affected matrilineal relatives/total matrilineal relatives) in this pedigree was 53%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrance of hearing loss in this pedigree was 42%. These matrilineal relatives exhibited a wide range of severity of hearing loss, varying from profound to normal hearing. Furthermore, these affected matrilineal relatives shared some common features: bilateral hearing loss of high frequencies and symmetries. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified the homoplasmic 12S rRNA A1555G mutation and other 35 variants belonging to Eastern Asian haplogroup D4. Of these, the V313I (G11696A) mutation in ND4 was associated with vision loss. However, the extremely low penetrance of visual loss, and the mild biochemical defect and the presence of one/167 Chinese controls indicted that the G11696A mutation is itself not sufficient to produce a clinical phenotype. Thus, the G11696A mutation may act in synergy with the primary deafness-associated 12S rRNA A1555G mutation in this Chinese family, thereby increasing the penetrance and expressivity of hearing loss in this Chinese pedigree.  相似文献   

13.
Despite the improvement of strategies against cancer therapy, the multidrug resistance (MDR)is the critical problem for successful cancer therapy. Recurrent cancers after initial treatment with chemotherapy are generally refractory to second treatments with these anticancer therapies. Therefore, it is necessary to elucidate the therapy-resistant mechanism for development of effective therapeutic modalities against tumors. Here we demonstrate a phase-specific chemotherapy resistance due to epidermal growth factor receptor (EGFR) in human breast cancer cells. Thymidine-induced G1-arrested cultures showed upregulated chemosensitivity, whereas S-phase arrested cells were more resistant to chemotherapeutic agents. Overexpression of EGFR promoted the MDR phenotypes in breast cancer cells via accelerating the G1/S phase transition, whereas depletion of EGFR exerted the opposite effects. Furthermore, CyclinD1, a protein related to cell cycle, was demonstrated to be involved in above EGFR-mediated effects since EGFR increased the expression of CyclinD1, and the specific RNA interference against CyclinD1 could primarily abolish the EGFR-induced MDR phenotypes. These data provide new insights into the mode by which MDR breast cancers evade cytoxic attacks from chemotherapeutic agents and also suggest a role for EGFR-CyclinD1 axis in this process.  相似文献   

14.
The mutation S349P in exon 10 of the phenylalanine hydroxylase (PAH) gene was identified in one Norwegian and one Polish phenylketonuria (PKU) allele on a haplotype 1.7 background. This missense mutation in PAH codon 349 is a T to C transition in cDNA position 1267. This mutation has been reported both on haplotype 1 and 4, suggesting recurrent mutation. In two different expression systems, the pET and the pMAL systems of Escherichia coli, it was shown that the S349P mutation, introduced by site directed mutagenesis, results in complete loss of enzymatic activity. Thus, protein instability alone does not seem to be the direct cause of the lack of activity of this PKU mutation as previously reported.We have identified mutations in the PAH gene of 118 PKU patients in Norway. To obtain information about how the different mutations affect the catalytic properties of the PAH enzyme we have used two prokaryotic expression systems.We detected the mutation S349P (Forrest et al. 1991) in one Norwegian patient and one of Polish ancestry. This mutation has previously been reported on haplotype 4 in North-African Jews (Weinstein et al. 1993), and on haplotype 1 in French-Canadians (John et al. 1992) and in Danes (Guldberg et al. 1993a). Here we present gene expression data showing that the recombinant mutant enzyme has no measurable residual catalytic activity.  相似文献   

15.
Novel missense mutation G571E (c.1775 G > A), novel silent mutation H229H (c.750 C > T), and nonsense mutation C74X (c.285 C > A), earlier described in Japan but unknown in Russia, were identified in the low-density lipoprotein (LDL) receptor gene in St. Petersburg familial hypercholesterolemia in patients. The analyzed group of patients was shown to be polymorphic in many positions of the LDL receptor gene, namely: c.1171 G/A, c.1773 T/C, c.2177 C/T, and c.2231 G/A.  相似文献   

16.
We have analyzed the clinical and molecular characterization of a Chinese family with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluations revealed that only those family members who had a history of exposure to aminoglycoside antibiotics subsequently developed hearing loss, suggesting mitochondrial genome involvement. Sequence analysis of the mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, a mutation that was identified previously in a few sporadic patients and in another Chinese family with non-syndromic deafness. The pathogenicity of the A827G mutation is strongly supported by the occurrence of the same mutation in two independent families and several genetically unrelated subjects. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly conserved in mammals. It is possible that the alteration of the tertiary or quaternary structure of this rRNA by the A827G mutation may lead to mitochondrial dysfunction, thereby playing a role in the pathogenesis of hearing loss and aminoglycoside hypersensitivity. However, incomplete penetrance of hearing impairment indicates that the A827G mutation itself is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Indeed, aminoglycosides may contribute to the phenotypic manifestation of the A827G mutation in this family. In contrast with the congenital or early-onset hearing impairment in another Chinese family carrying the A827G mutation, three patients in this pedigree developed hearing loss only after use of aminoglycosides. This discrepancy likely reflects the difference of genetic backgrounds, either mitochondrial haplotypes or nuclear modifier genes, between two families.  相似文献   

17.
S Handeli  H Weintraub 《Cell》1992,71(4):599-611
The ts41 mutation of Chinese hamster cells was first isolated and characterized by Hirschberg and Marcus (1982) who showed that at nonpermissive temperature, cells accumulate up to 16C equivalents of DNA. Here we show that the mutation is recessive and at nonpermissive temperature, cells replicate their genome normally, but instead of going on into G2, M, and G1, they pass directly into a second S phase. Entry into a second S phase does not require serum nor is it inhibited by G2 checkpoints or mitotic inhibitors. Temperature-shift experiments suggest that the ts41 gene product participates in two functions in the cell cycle: entry into mitosis and inhibition of entry into S phase. The ts41 mutation seems to define a class of cell cycle mutant that couples the sequential events of DNA replication and mitosis.  相似文献   

18.
Fluoroquinolone resistance in Pseudomonas aeruginosa is mainly attributable to the constitutive expression of the xenobiotic efflux pump and mutation in DNA gyrase or topoisomerase IV. We constructed cells with a double-mutation in gyrA and mexR encoding DNA gyrase and repressor for the mexAB-oprM operon, respectively. The mutant showed 1,024 times higher fluoroquinolone resistance than cells lacking the MexAB-OprM. Cells with a single mutation in gyrA and producing a wild-type level of the MexAB-OprM efflux pump showed 128 times higher fluoroquinolone resistance than cells lacking the MexAB-OprM. In contrast, a single mutation in gyrA or mexR caused only 4 and 64 times higher resistance, respectively. These findings manifested the interplay between the MexAB-OprM efflux pump and the target mutation in fluoroquinolone resistance.  相似文献   

19.
The stalk segments of P-type ion-translocating enzymes are presumed to play important roles in energy coupling. In this work, stalk segments S4 and S5 of the yeast H(+)-ATPase were examined for helical character, optimal length, and segment orientation by a combination of proline substitution, insertion/deletion mutagenesis, and second-site suppressor analyses. The substitution of various residues for helix-disrupting proline in both S4 (L353P,L353G; A354P; and G371P) and S5 (D676P and I684P) resulted in highly defective or inactive enzymes supporting the importance of helical character and/or the maintenance of essential interactions. The contiguous helical nature of transmembrane segment M5 and stalk element S5 was explored and found to be favorable, although not essential. The deletion or addition of one or more amino acids at positions Ala(354) in S4 and Asp(676) in S5, which were intended to either rotate helical faces or extend/reduce the length of helical segments, resulted in enzyme destabilization that abolished most enzyme assembly. Second-site suppressor mutations were obtained to primary site mutations G371A (S4) and D676G (S5) and were analyzed with a molecular structure model of the H(+)-ATPase. Primary site mutations were predicted to alter the site of phosphorylation either directly or indirectly. The suppressor mutations either directly changed packing around the primary site or altered the environment of the site of phosphorylation. Overall, these data support the view that stalk segments S4 and S5 of the H(+)-ATPase are helical elements that are optimized for length and interactions with other stalk elements and can influence the phosphorylation domain.  相似文献   

20.
Escherichia coli strains BN and CAN are unable to support the growth of bacteriophage T4 psu1+-amber double mutants. For strain BN, this phenotype has been attributed to a defect in 3′ processing of the precursor to psu1+ tRNASer. Since RNAase D and RNAase II are the only well-characterized 3′ exoribonucleases to be implicated in tRNA processing, the status of these activities and their genes in the mutant strains was investigated. Although extracts of strains BN and CAN were defective for hydrolysis of the artificial tRNA precursor, tRNA-C-U, these strains contained normal levels of RNAase D and RNAase II, and purified RNAase D or RNAase II could only partially complement the mutant extracts. Introduction of the wild-type RNAase D gene into strains BN and CAN did not correct the mutant phenotype. Likewise, strains defective in RNAase D and/or RNAase II plated T4psu1+-amber phage normally. These results indicate that the tRNA processing defect in strains BN and CAN is not due to a mutation in either RNAase U or RNAase II. The possibility that the mutation in these strains affects another exoribonuclease or a factor influencing the activity and specificity of RNAase D or RNAase II is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号