首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acids induce apoptosis in primary astrocytes by enhancing ceramide synthesis de novo. The possible role of the AMP-activated protein kinase (AMPK) in the control of apoptosis was studied in this model. Long-term stimulation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) prevented apoptosis. AICAR blunted fatty acid-mediated induction of serine palmitoyltransferase and ceramide synthesis de novo, without affecting fatty acid synthesis and oxidation. Prevention of ceramide accumulation by AICAR led to a concomitant blockade of the Raf-1/extracellular signal-regulated kinase cascade, which selectively mediates fatty acid-induced apoptosis. Data indicate that AMPK may protect cells from apoptosis induced by stress stimuli.  相似文献   

2.
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) is an activator of AMP activated protein kinase (AMPK) and a regulator of de novo purine synthesis. There are several earlier reports indicating that AICAR treatment suppresses cell growth via regulation of AMPK or de novo purine synthesis. We found cell growth to be suppressed by AICAR treatment in HepG2 because of p53 accumulation, which was associated with p53-Ser15 phosphorylation. Moreover, a motif very similar to the consensus motif of AMPK phosphorylation was found around p53-Ser15, and Ser15 phosphorylation was detected in AICAR treated HepG2 as was in vitro phosphorylation by AMPK. Our results suggest that AICAR may regulate cell growth via p53 phosphorylation, and also indicate the possibility of p53 phosphorylation.  相似文献   

3.
Tumor cells have increased metabolic requirements to maintain rapid growth. In particular, a highly lipogenic phenotype is a hallmark of many tumor types, including prostate. Cancer cells also have increased turnover of nicotinamide adenine dinucleotide (NAD(+)), a coenzyme involved in multiple metabolic pathways. However, a specific role for NAD(+) in tumor cell lipogenesis has yet to be described. Our studies demonstrate a novel role for the NAD(+)-biosynthetic enzyme Nicotinamide phosphoribosyltransferase (Nampt) in maintaining de novo lipogenesis in prostate cancer (PCa) cells. Inhibition of Nampt reduces fatty acid and phospholipid synthesis. In particular, short chain saturated fatty acids and the phosphatidylcholine (PC) lipids into which these fatty acids are incorporated were specifically reduced by Nampt inhibition. Nampt blockade resulted in reduced ATP levels and concomitant activation of AMP-activated protein kinase (AMPK) and phosphorylation of acetyl-CoA carboxylase (ACC). In spite of this, pharmacological inhibition of AMPK was not sufficient to fully restore fatty acid synthesis. Rather, Nampt blockade also induced protein hyperacetylation in PC-3, DU145, and LNCaP cells, which correlated with the observed decreases in lipid synthesis. Moreover, the sirtuin inhibitor Sirtinol, and the simultaneous knockdown of SIRT1 and SIRT3, phenocopied the effects of Nampt inhibition on fatty acid synthesis. Altogether, these data reveal a novel role for Nampt in the regulation of de novo lipogenesis through the modulation of sirtuin activity in PCa cells.  相似文献   

4.
5.
5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) is widely used as an AMP-kinase activator, which regulates energy homeostasis and response to metabolic stress. Here, we investigated the effect of AICAR, an AMPK activator, on proliferation of various cancer cells and observed that proliferation of all the examined cell lines was significantly inhibited by AICAR treatment due to arrest in S-phase accompanied with increased expression of p21, p27, and p53 proteins and inhibition of PI3K-Akt pathway. Inhibition in in vitro growth of cancer cells was mirrored in vivo with increased expression of p21, p27, and p53 and attenuation of Akt phosphorylation. Anti-proliferative effect of AICAR is mediated through activated AMP-activated protein kinase (AMPK) as iodotubericidin and dominant-negative AMPK expression vector reversed the AICAR-mediated growth arrest. Moreover, constitutive active AMPK arrested the cells in S-phase by inducing the expression of p21, p27, and p53 proteins and inhibiting Akt phosphorylation, suggesting the involvement of AMPK. AICAR inhibited proliferation in both LKB and LKB knock-out mouse embryo fibroblasts to similar extent and arrested cells at S-phase when transfected with dominant negative expression vector of LKB. Altogether, these results indicate that AICAR can be utilized as a therapeutic drug to inhibit cancer, and AMPK can be a potential target for treatment of various cancers independent of the functional tumor suppressor gene, LKB.  相似文献   

6.
In several non-vascular tissues in which it has been studied, AMP-activated protein kinase (AMPK) appears to modulate the cellular response to stresses such as ischemia. In liver and muscle, it phosphorylates and inhibits acetyl CoA carboxylase (ACC), leading to an increase in fatty acid oxidation; and in muscle, its activation is associated with an increase in glucose transport. Here we report the presence of both AMPK and ACC in human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with 2 mM AICAR, an AMPK activator, caused a 5-fold activation of AMPK, which was accompanied by a 70% decrease in ACC activity and a 2-fold increase in fatty acid oxidation. Surprisingly, glucose uptake and glycolysis, the dominant energy-producing pathway in HUVEC, were diminished by 40-60%. Despite this, cellular ATP levels were increased by 35%. Thus activation of AMPK by AICAR is associated with major alterations in endothelial cell energy balance. Whether these alterations protect the endothelium during ischemia or other stresses remains to be determined.  相似文献   

7.
The adipocyte-derived hormone adiponectin was recently shown to stimulate glucose-utilization and to increase fatty acid oxidation in liver and muscle. The effects were ascribed to adiponectin-receptor mediated activation of the key metabolic regulator AMP-activated protein kinase (AMPK). In pancreatic beta cells, AMPK-activation is known to affect cellular function. We therefore investigated a possible adiponectin-induced activation of AMPK in beta cells. RT-PCR analysis confirmed the expression of adiponectin receptor subtypes 1 and 2 in rat beta cells and showed their expression in insulin-secreting MIN6 cells. Culture with physiological concentrations (2.5 microg/ml) of globular adiponectin was found to increase the phosphorylation of both AMPK and acetylcoA carboxylase (ACC) in these cell types. Like the pharmacological AMPK activator 5-amino-imidazole-4-carboxamide-riboside (AICAR), adiponectin activated AMPK in beta cells and MIN6 cells. In short-term incubations of MIN6 cells with either adiponectin (2.5 microg/ml) or AICAR (1 mM), the flux of glucose-carbon to acyl CoA/cholesterol biosynthetic intermediates was reduced. We conclude that adiponectin induces an activation of AMPK in beta cells, which inhibits their cataplerosis of glucose-carbon to lipids.  相似文献   

8.
8‐chloro‐cyclic AMP (8‐Cl‐cAMP), which induces differentiation, growth inhibition, and apoptosis in various cancer cells, has been investigated as a putative anti‐cancer drug. However, the exact mechanism of 8‐Cl‐cAMP functioning in cancer cells is not fully understood. Akt/protein kinase B (PKB) genes (Akt1, Akt2, and Akt3) encode enzymes belonging to the serine/threonine‐specific protein kinase family. It has been suggested that Akt/PKB enhances cell survival by inhibiting apoptosis. Recently, we showed that 8‐Cl‐cAMP and 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR) inhibited cancer cell growth through the activation of AMPK and p38 MAPK. Therefore, we anticipated that the phosphorylation of Akt/PKB would be decreased upon treatment with 8‐Cl‐cAMP. However, treatment with 8‐Cl‐cAMP and AICAR induced the phosphorylation of Akt/PKB, which was inhibited by ABT702 (an adenosine kinase inhibitor) and NBTI (an adenosine transporter inhibitor). Furthermore, whereas Compound C (an AMPK inhibitor), AMPK‐DN (AMPK‐dominant negative) mutant, and SB203580 (a p38 MAPK inhibitor) did not block the 8‐Cl‐cAMP‐induced phosphorylation of Akt/PKB, TCN (an Akt1/2/3 specific inhibitor) and an Akt2/PKBβ‐targeted siRNA inhibited the 8‐Cl‐cAMP‐ and AICAR‐mediated phosphorylation of AMPK and p38 MAPK. TCN also reversed the growth inhibition mediated by 8‐Cl‐cAMP and AICAR. Moreover, an Akt1/PKBα‐targeted siRNA did not reduce the phosphorylation of AMPK and p38 MAPK after treatment with 8‐Cl‐cAMP. These results suggest that Akt2/PKBβ activation promotes the phosphorylation of AMPK and p38 MAPK during the 8‐Cl‐cAMP‐ and AICAR‐induced growth inhibition. J. Cell. Physiol. 228: 890–902, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The mechanisms by which ethanol consumption causes accumulation of hepatic triacylglycerols are complex. AMP-activated protein kinase (AMPK) plays a central role in the regulation of lipid metabolism. Therefore, in the present study we investigated whether AMPK may have a role in the development of ethanol-induced fatty liver. Hepatocytes isolated from rats fed with an ethanol-containing liquid diet showed higher rates of fatty acid and triacylglycerol syntheses, but a decreased rate of fatty acid oxidation, concomitant to a lower activity of carnitine palmitoyltransferase I. Hepatocytes from both ethanol-fed and pair-fed control rats were incubated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator in intact cells. In both hepatocyte preparations AICAR strongly inhibited the activity of acetyl-CoA carboxylase in parallel to fatty acid synthesis, but cells from ethanol-fed rats showed significantly lower sensitivity to inhibition by AICAR. Moreover, AICAR strongly decreased triacylglycerol synthesis and increased fatty acid oxidation in control hepatocytes, but these effects were markedly attenuated in hepatocytes from ethanol-fed rats. In parallel, AMPK in liver of ethanol-fed rats showed a decreased specific activity and a lower sensitivity to changes in the AMP/ATP ratio, compared to the enzyme of control rats. These effects are consistent with the impairment of AMPK-mediated regulation of fatty acid metabolism after ethanol consumption, that will facilitate triacylglycerol accumulation. Taken together, these findings suggest that a decreased AMPK activity may have an important role in the development of alcoholic fatty liver.  相似文献   

10.
11.
12.
One of the most common molecular changes in cancer is the increased endogenous lipid synthesis, mediated primarily by overexpression and/or hyperactivity of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). The changes in these key lipogenic enzymes are critical for the development and maintenance of the malignant phenotype. Previous efforts to control oncogenic lipogenesis have been focused on pharmacological inhibitors of FAS and ACC. Although they show anti-tumor effects in culture and in mouse models, these inhibitors are nonselective blockers of lipid synthesis in both normal and cancer cells. To target lipid anabolism in tumor cells specifically, it is important to identify the mechanism governing hyperactive lipogenesis in malignant cells. In this study, we demonstrate that lysophosphatidic acid (LPA), a growth factor-like mediator present at high levels in ascites of ovarian cancer patients, regulates the sterol regulatory element binding protein-FAS and AMP-activated protein kinase-ACC pathways in ovarian cancer cells but not in normal or immortalized ovarian epithelial cells. Activation of these lipogenic pathways is linked to increased de novo lipid synthesis. The pro-lipogenic action of LPA is mediated through LPA(2), an LPA receptor subtype overexpressed in ovarian cancer and other malignancies. Downstream of LPA(2), the G(12/13) and G(q) signaling cascades mediate LPA-dependent sterol regulatory element-binding protein activation and AMP-activated protein kinase inhibition, respectively. Moreover, inhibition of de novo lipid synthesis dramatically attenuated LPA-induced cell proliferation. These results demonstrate that LPA signaling is causally linked to the hyperactive lipogenesis in ovarian cancer cells, which can be exploited for development of new anti-cancer therapies.  相似文献   

13.
Invadopodia are membrane protrusions that facilitate matrix degradation and cellular invasion. Although lipids have been implicated in several aspects of invadopodia formation, the contributions of de novo fatty acid synthesis and lipogenesis have not been defined. Inhibition of acetyl-CoA carboxylase 1 (ACC1), the committed step of fatty acid synthesis, reduced invadopodia formation in Src-transformed 3T3 (3T3-Src) cells, and also decreased the ability to degrade gelatin. Inhibition of fatty acid synthesis through AMP-activated kinase (AMPK) activation and ACC phosphorylation also decreased invadopodia incidence. The addition of exogenous 16∶0 and 18∶1 fatty acid, products of de novo fatty acid synthesis, restored invadopodia and gelatin degradation to cells with decreased ACC1 activity. Pharmacological inhibition of ACC also altered the phospholipid profile of 3T3-Src cells, with the majority of changes occurring in the phosphatidylcholine (PC) species. Exogenous supplementation with the most abundant PC species, 34∶1 PC, restored invadopodia incidence, the ability to degrade gelatin and the ability to invade through matrigel to cells deficient in ACC1 activity. On the other hand, 30∶0 PC did not restore invadopodia and 36∶2 PC only restored invadopodia incidence and gelatin degradation, but not cellular invasion through matrigel. Pharmacological inhibition of ACC also reduced the ability of MDA-MB-231 breast, Snb19 glioblastoma, and PC-3 prostate cancer cells to invade through matrigel. Invasion of PC-3 cells through matrigel was also restored by 34∶1 PC supplementation. Collectively, the data elucidate the novel metabolic regulation of invadopodia and the invasive process by de novo fatty acid synthesis and lipogenesis.  相似文献   

14.
5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a phylogenetically conserved serine/threonine protein kinase. AMPK may inhibit cell growth and proliferation and also regulates apoptosis. 5′-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) is a cell-permeable AMPK activator. Activation of AMPK with AICAR has been shown to induce apoptosis of the rat hepatoma cell line FTO2B cells and almost completely inhibited HepG2 cells growth. In this study, a HepG2 cell line, which was transfected with a vector containing human CYP2E1 cDNA (E47 cells), was treated with AICAR. Cell proliferation was blocked, and apoptosis and necrosis were elevated as assessed by cellular morphology, DNA content assay, and lactate dehydrogenase leakage. AICAR treatment significantly increases CYP2E1 activity (20-fold) and expression (5.5-fold) in E47 cells. Iodotubericidin, which inhibits the conversion of AICAR to its activated form AICAR monophosphate, the antioxidants trolox and MnTMPyP, and 4-methylpyrazole, an inhibitor of CYP2E1, all can protect the E47 cells from AICAR-induced necrosis. Production of intracellular reactive oxygen species was increased by AICAR treatment in E47 cells. The cytotoxicity mechanism of AICAR in E47 cells is suggested to include AMPK activation, p53 phosphorylation, p21 expression, overexpression of CYP2E1, and intracellular ROS accumulation.  相似文献   

15.
It has been shown that lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), are highly expressed in the rodent brain during the early neonatal period and decline thereafter. However, cellular localization of these enzymes is unknown. Presently, we examined developmental changes in the levels and cellular localization of FAS and ACC, and their putative regulators, sterol-regulatory element-binding protein (SREBP)-1 and AMP-activated protein kinase (AMPK) in the mouse brain. Levels of these proteins including phosphorylated forms of ACC and AMPK decreased between postnatal day 4 (P4) and P19. Immunohistochemical studies indicated that FAS, ACC, AMPK, and SREBP-1 were expressed in neurons at P7, while FAS was found mostly in cells of oligodendrocyte lineage at P19. These studies suggest that neurons in the early neonatal brain are involved in do novo fatty acid synthesis.  相似文献   

16.
17.
Extracellular signal-regulated kinase (ERK) is one of the key protein kinases that regulate the growth and proliferation in cardiac fibroblasts (CFs). As an energy sensor of cellular metabolism, AMP-activated protein kinase (AMPK) is found recently to be involved in myocardial remodeling. In this study, we investigated the crosstalk between ERK and AMPK in the growth and proliferation of CFs. In neonatal rat cardiac fibroblasts (NRCFs), we found that serum significantly inhibited basal AMPK phosphorylation between 10 min and 24 h and also partially inhibited AMPK phosphorylation by AMPK activator, 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR). Furthermore, ERK inhibitor could greatly reverse the inhibition of AMPK by serum. Conversely, activation of AMPK by AICAR also showed a significant inhibition of basal and serum-induced ERK phosphorylation but it showed a delayed and steadfast inhibition which appeared after 60 min and lasted until 12 h. Moreover, inhibition of ERK could repress the activation of p70S6K, an important kinase in cardiac proliferation, and AICAR could also inhibit p70S6K phosphorylation. In addition, under both serum and serum-free medium, AICAR significantly inhibited the DNA synthesis and cell numbers, and reduced cells at S phase. In conclusion, AMPK activation with AICAR inhibited growth and proliferation in cardiac fibroblasts, which involved inhibitory interactions between ERK and AMPK. This is the first report that AMPK could be a target of ERK in growth factors-induced proliferation, which may give a new mechanism that growth factors utilize in their promotion of proliferation in cardiac fibroblasts.  相似文献   

18.
Activation of 5′ adenosine monophosphate-activated protein kinase (AMPK) with aminoimidazole carboxamide ribonucleotide (AICAR) increases skeletal muscle glucose uptake and fatty acid oxidation. The purpose of these experiments was to utilize AICAR to enhance palmitate consumption by mitochondria in cultured skeletal muscle cells. In these experiments, we treated C2C12 myotubes or adult single skeletal muscle fibers with varying concentrations of AICAR for different lengths of time. Surprisingly, acute AICAR exposure at most concentrations (0.25–1.5 mM), but not all (0.1 mM), modestly inhibited oxygen consumption even though AICAR increased AMPK phosphorylation. The data suggest that AICAR inhibited oxygen consumption by the cultured muscle in a non-specific manner. The results of these experiments are expected to provide valuable information to investigators interested in using AICAR in cell culture studies.  相似文献   

19.
AMPK regulation of the growth of cultured human keratinocytes   总被引:2,自引:0,他引:2  
AMP kinase (AMPK) is a fuel sensing enzyme that responds to cellular energy depletion by increasing processes that generate ATP and inhibiting others that require ATP but are not acutely necessary for survival. In the present study, we examined the relationship between AMPK activation and the growth (proliferation) of cultured human keratinocytes and assessed whether the inhibition of keratinocyte growth by vitamin D involves AMPK activation. In addition, we explored whether the inhibition of keratinocyte proliferation as they approach confluence could be AMPK-related. Keratinocytes were incubated for 12 h with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). At concentrations of 10(-4) and 10(-3) M, AICAR inhibited keratinocyte growth by 50% and 95%, respectively, based on measurements of thymidine incorporation into DNA. It also increased AMPK and acetyl CoA carboxylase phosphorylation (P-AMPK and P-ACC) and decreased the concentration of malonyl CoA confirming that AMPK activation had occurred. Incubation with the thiazolidinedione, troglitazone (10(-6) M) caused similar alterations in P-AMPK, P-ACC, and cell growth. In contrast, the well known inhibition of keratinocyte growth by 1,25-dihydroxyvitamin D3 (10(-7) and 10(-6) M) was not associated with changes in P-AMPK or P-ACC. Like most cells, the growth of keratinocytes diminished as they approached confluence. Thus, it was of note that we found a progressive increase in P-AMPK (1.5- to 2-fold, p < 0.05) as keratinocytes grown in control medium went from 25% to 100% confluence. In conclusion, the data are consistent with the hypothesis that activation of AMPK acts as a signal to diminish the proliferation of cultured keratinocytes as they approach confluence. They also suggest that AMPK activators, such as AICAR and troglitazone, inhibit keratinocyte growth and that the inhibition of cell growth by 1,25-dihydroxyvitamin D3 is AMPK-independent.  相似文献   

20.
Methenyltetrahydrofolate synthetase (EC 6.3.3.2) catalyzes the irreversible ATP and Mg2+-dependent transformation of 5-formyltetrahydrofolate (N5-HCO-H4-pteroylglutamic acid (PteGlu] to 5,10-methenyltetrahydrofolate. The physiological function of this reaction remains unknown even though it is potentially involved in the intracellular metabolism of the large doses of N5-HCO-H4-PteGlu (leucovorin) administered to cancer patients. We have tried to elucidate methenyltetrahydrofolate synthetase's physiological role by examining the consequences of its inhibition in MCF-7 human breast cancer cells by the folate analog 5-formyltetrahydrohomofolate (fTHHF), a potent competitive inhibitor with a Ki of 1.4 microM. fTHHF inhibited MCF-7 cell growth with an IC50 of 2.0 microM during 72-h exposures, and this effect was fully reversible by hypoxanthine but not thymidine, indicating specific inhibition of de novo purine synthesis. A correlation was observed between increases in intracellular N5-HCO-H4-PteGlu concentrations following fTHHF and cell growth inhibition. De novo purine synthesis was inhibited at the second folate-dependent enzyme, phosphoribosyl aminoimidazole-carboxamide formyltransferase (AICAR transferase; EC 2.1.2.3), as determined by aminoimidazole carboxamide rescue and azaserine inhibition studies. N5-HCO-H4-PteGlu pentaglutamate was a potent inhibitor of purified MCF-7 cell AICAR transferase with a Ki of 3.0 microM while the monoglutamate was not an inhibitor up to 10 microM and fTHHF was only weakly inhibitory with a Ki of 16 microM. These findings suggest that methenyltetrahydrofolate synthetase activity is needed to prevent de novo purine synthesis inhibition by N5-HCO-H4-PteGlu polyglutamates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号