首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, and direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and, (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes (alpha-globin, betaH-1 globin, beta-major globin, epsilon -globin, and zeta-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, epsilon-globin, gamma-globin, betaH1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the ES cells of secondary EB origin cultured in media containing dexamethasone showed a down-regulation of GATA-3 and an up-regulation of GATA-1, Flk-1, and Epo-R in comparison to the two other cytokines and growth factor combinations containing media. The secondary differentiation also showed an enhanced production of erythrocytic precursors in dexamethasone containing media in comparison to that in the control media. Our results indicate that dexamethasone can prove to be an effective agent which can be employed to enhance differentiation towards erythrocytic progenitors from ES cells.  相似文献   

3.
Hematopoietic stem cells (HSCs) can self-renew and differentiate into all cell types of the blood. This is therapeutically important as HSC transplants can provide a curative effect for blood cancers and disorders. The process by which HSCs develop has been the subject of extensive research in a variety of model organisms; however, efforts to produce bonafide HSCs from pluripotent precursors capable of long-term multilineage reconstitution have fallen short. Studies in zebrafish, chicken, and mice have been instrumental in guiding efforts to derive HSCs from human pluripotent stem cells and have identified a complex set of molecular signals and cellular interactions mediated by such developmental regulators as fibroblast growth factor, Notch, transforming growth factor beta (TGFβ), and Wnt, which collectively promote the stepwise developmental progression toward mature HSCs. Tight temporal and spatial control of these signals is critical to generate the appropriate numbers of HSCs needed for the life of the organism. The role of the Wnt family of signaling proteins in hematopoietic development has been the subject of many studies owing in part to the complex nature of its signaling mechanisms. By integrating cell fate specification with cell polarity establishment, Wnt is uniquely capable of controlling complex biological processes, including at multiple stages of embryonic HSC development, from HSC specification to emergence from the hemogenic epithelium to subsequent expansion. This review highlights key signaling events where specific Wnt signals instruct and guide hematopoietic development in both zebrafish and mice and extend these findings to current efforts of generating HSCs in vitro.  相似文献   

4.
目的 观察牙龈卟啉单胞菌(P.gingivalis)感染通过Wnt通路调节牙周膜干细胞(PDLSCs)成骨分化的作用。 方法 培养原代PDLSCs,分为常规处理的对照组、P.gingivalis感染的P.gingivalis组和P.gingivalis感染并用Wnt3a处理的P.gingivalis+Wnt3a组,成骨诱导后茜素红染色并检测A405值,Western blot检测Wnt通路分子的蛋白表达量,碱性磷酸酶(ALP)试剂盒检测ALP活力,PCR检测成骨标志基因Runt相关转录因子2(Runx2)、骨钙素(OCN)的mRNA表达量。 结果 与对照组比较,P.gingivalis组Wnt3a、βcatenin、pGSK3β的蛋白表达水平(0.33±0.07)、(0.27±0.08)、(0.44±0.09)以及成骨诱导后A405值(0.55±0.08)、ALP活力(20.14±6.54)U/mL和Runx2、OCN的mRNA表达量(0.45±0.09)、(0.51±0.07)均明显减少;与P.gingivalis组比较,P.gingivalis+Wnt3a组成骨诱导后A405值(0.89±0.15)、ALP活力(29.44±5.26)U/mL及Runx2、OCN的mRNA表达量(0.89±0.17)、(0.81±0.18)均明显增加。 结论 P.gingivalis感染能够抑制PDLSCs的成骨分化,抑制Wnt通路是可能的分子机制。  相似文献   

5.
6.
Mitofusin 2 (MFN2) is a regulatory protein participating in mitochondria dynamics, cell proliferation, death, differentiation, and so on. This study aims at revealing the functional role of MFN2 in the pluripotency maintenance and primitive differetiation of embryonic stem cell (ESCs). A dox inducible silencing and routine overexpressing approach was used to downregulate and upregulate MFN2 expression, respectively. We have compared the morphology, cell proliferation, and expression level of pluripotent genes in various groups. We also used directed differentiation methods to test the differentiation capacity of various groups. The Akt signaling pathway was explored by the western blot assay. MFN2 upregulation in ESCs exhibited a typical cell morphology and similar cell proliferation, but decreased pluripotent gene markers. In addition, MFN2 overexpression inhibited ESCs differentiation into the mesendoderm, while MFN2 silencing ESCs exhibited a normal cell morphology, slower cell proliferation and elevated pluripotency markers. For differentiation, MFN2 silencing ESCs exhibited enhanced three germs' differentiation ability. Moreover, the protein levels of phosphorylated Akt308 and Akt473 decreased in MFN2 silenced ESCs, and recovered in the neural differentiation process. When treated with the Akt inhibitor, the neural differentiation capacity of the MFN2 silenced ESCs can reverse to a normal level. Taken together, the data indicated that the appropriate level of MFN2 expression is essential for pluripotency and differentiation capacity in ESCs. The increased neural differentiation ability by MFN2 silencing is strongly related to the Akt signaling pathway.  相似文献   

7.
Osteogenic differentiation refers to the process of bone formation and remodeling, which is controlled by complex molecular mechanisms. Activin A receptor type I (ACVR1) is reported to be associated with osteogenic differentiation. However, the underlying molecular mechanism remains elusive. Therefore, this study evaluates the function of ACVR1 in osteogenic differentiation through the Wnt signaling pathway. The expression of osteocalcin (Oc) and osterix together with osteogenic differentiation and mineralization was examined in ACVR1-knockout (KO) mouse. Furthermore, the Wnt signaling pathway was inhibited in bone marrow stromal cells (BMSCs) of mice to explore the role of the Wnt signaling pathway in osteogenic differentiation by means of alkaline phosphatase (ALP) activity detection and evaluation of mineralized nodules and calcium content. Subsequently, the effect of ACVR1 on the Wnt signaling pathway was assessed by determining the expression of ACVR1, β-catenin, glycogen synthase kinase 3 β (GSK3β), dickkopf-related protein 1 (DKK1), and frizzled class receptor 1 (FZD1). Both their effects on osteogenic differentiation were further evaluated by determination of Oc, osterix, and Runx2 expression. AVCR1 KO mice exhibited increased Oc and osterix expression and promoted bone resorption and formation. ACVR1-knockout was observed to activate the Wnt signaling pathway with an increase of β-catenin and reductions in GSK3β, DKK1, and FZD1. With the inhibited Wnt signaling pathway expression of Oc, osterix, and Runx2 was decreased, and ALP activity, mineralized nodule, and calcium content in cellular matrix were decreased as well, indicating that inactivation of the Wnt signaling pathway reduced the differentiation of BMSCs into osteoclasts. These findings indicate that ACVR1-knockout promotes osteogenic differentiation by activating the Wnt signaling pathway in mice.  相似文献   

8.
胚胎干细胞分离自胚泡内细胞团,具有无限自我更新和多向分化潜能,有很大的医学应用前景。Wnt家族是一类分泌型的细胞信号传导蛋白,可以通过复杂的信号传递通路调控胚胎的早期发育,对细胞的分化、增殖及生长具有重要的调节作用。该文就Wnt信号通路调节胚胎干细胞的自我更新和分化作一综述。  相似文献   

9.
10.
The objective of this study was to clarify the relationship between the effect and associated mechanisms of lithium chloride on neural stem cells (NSCs) and the Wnt signaling pathway. The expression of key molecules proteins related to the Wnt signaling pathway in the proliferation and differentiation of control NSCs and lithium chloride-treated NSCs was detected by Western blot analysis. Flow cytometry analysis was applied to study the cell cycle dynamics of control NSCs and NSCs treated with lithium chloride. The therapeutic concentrations of lithium chloride stimulated NSC proliferation. β-catenin expression gradually decreased, while Gsk-3β expression gradually increased (P?P?in vitro and preventing the cells from differentiating, which is potentially mediated by activation of the Wnt signaling pathway.  相似文献   

11.
目的观察Wnt/β-catenin信号通路是否在体外以外源性Wnt3a持续作用小鼠胚胎干细胞后被激活,并进一步调控该通路下游基因的表达。方法应用外源性Wnt3a持续作用ES-E14TG2a小鼠胚胎干细胞21d,通过细胞免疫荧光及Western Blotting检测细胞内β-catenin蛋白,以观察该蛋白的胞内积聚情况;同时QRT-PCR检测WNT下游靶标基因的表达量,采用完全随机F检验并用LSD法进行两两比较,来确定经典WNT/β-catenin信号通路是否被激活。结果ES-E14TG2a小鼠胚胎干细胞经Wnt3a连续培养21d后,β-catenin蛋白的细胞荧光明显较强,而对照组中的荧光强度较弱,说明细胞内β-catenin蛋白没有被降解而是在胞内大量积累;Western Blotting检测结果显示Wnt3a连续培养21d后ES-E14TG2a细胞内β-catenin蛋白条带明显比空白对照的蛋白条带粗;ES—E14TG2a细胞经wnt3a培养后Pitx2、Frizzled、Sox17的表达量均持续上升,Pitx2在培养7d、14d、21d分别为4.17±0.20、7.27±0.35、8.59±0.21(F=222.757,P=0.000);Frizzled在培养7d、14d、21d分别为1.01±0.06、2.93±0.22、5.44±0.30(F=302.703,P=0.000);Sox17在培养7d、14d、21d分别为8.45±0.41、18.35±0.17、34.93±0.16(F=7217.083,P=0.000);Oct4培养到7d、14d的表达量持续增加分别为1.22±0.21、1.56±0.04,而连续培养21d后Oct4基因的表达量下降为1.15±0.07(F=8.827,P=0.016)。结论Wnt3a持续作用可激活Wnt/β-catenin信号通路,并调控下游基因的表达。  相似文献   

12.
Aberrant activation of the Wnt signaling pathway is a common event in human tumor progression. Wnt signaling has also been implicated in maintaining a variety of adult and embryonic stem cells by imposing a restraint to differentiation. To understand the effect of Wnt signaling on the differentiation of epithelial cells, we used mouse teratocarcinoma F9 cells as a model. The F9 cells can be differentiated into visceral endoderm (VE) resembling absorptive columnar epithelial cells. We performed comparative gene expression analysis on retinoic acid-differentiated and undifferentiated F9 cells and confirmed that markers of VE and intestinal epithelium were induced upon differentiation. The induction of these markers by retinoic acid was reduced in the presence of Wnt, although Wnt alone did not change their expression. This suggests that Wnt signaling inhibited the differentiation of F9 cells by altering gene expression. This inhibition was also reflected in the morphology of the F9 cells as their apical-basal polarity was disrupted by inclusion of Wnt during differentiation. These results support a model in which Wnt modulates the expression of genes required for normal terminal differentiation of the stem cells. However, it follows that progenitor cells must escape from Wnt signaling to attain the differentiated state. Accordingly, we found that differentiated F9 cells no longer responded to Wnt and that a blockade in Wnt signaling occurred upstream of Axin. Consistent with this, Wnt negative regulators, such as Dickkopf-1 and Disabled-2, were induced upon the differentiation of F9 cells. We propose that a similar system to produce Wnt inhibitors regulates homeostasis of certain stem cell compartments in vivo.  相似文献   

13.
Neuronal differentiation of NTE-deficient embryonic stem cells   总被引:3,自引:0,他引:3  
Organophosphates induce neurological disorders. One of the enzymes inhibited by these compounds is neuropathy target esterase (NTE). In vitro, inhibition of NTE activity by organophosphates is correlated with inhibition of neurite initiation and reduction of neurite length, supporting the hypothesis that organophosphate-induced neurological disorders are caused by inhibition of NTE activity. However, there is no direct evidence for the involvement of NTE in organophosphate-induced impairment of neurites in vitro. To examine the role of NTE, we have generated NTE-deficient mouse embryonic stem cells. These cells can differentiate into neuron-like cells. Although NTE-deficient cells exhibited a delay in neurite initiation in vitro, both the proportion of neuron-like cells which initiated neurites and the elongation of these neurites occurred at the normal rate. These results demonstrate that NTE activity is not required for neurite initiation or elongation per se, but is essential for the optimal rate of neurite initiation.  相似文献   

14.
15.
范晴晴  孟飞龙  房冉  李高鹏  赵小立 《遗传》2017,39(10):897-907
Wnt信号通路在生物发育和维持内环境稳态过程中起着重要作用。Wnt配体通过与Frizzle受体结合参与体轴的形成、细胞分化和细胞命运决定等生命活动。在小鼠内耳发育过程中,Wnt信号通路扮演了重要角色:在内耳发育早期阶段,参与听基板的特化和听泡的形成;在内耳发育后期阶段,调控毛细胞分化及毛细胞纤毛束的定向。本文综述了Wnt信号通路在内耳毛细胞发育分化及再生过程中的研究进展,以期为从事相关领域的科研人员提供参考。  相似文献   

16.
Bone marrow-derived mesenchymal stem cells (BMSCs) are a suitable option for cell-based tissue engineering therapies due to their ability to renew and differentiate into multiple different tissue types, such as bone. Over the last decade, the effect of GNAS on the regulation of osteoblast differentiation has attracted great attention. Herein, this study aimed to explore the role of GNAS in osteogenic differentiation of MSCs. A total of 85 GNASf/f male mice were selected for animal experiments and 10 GNASf/f male mice for BMSC isolation to conduct cell experiments. The mice and BMSCs were treated with Verteporfin (a Hippo signaling pathway inhibitor) to inhibit the Hippo signaling pathway or recombinant adenovirus-expressing Cre to knockout the GNAS expression. Next, computed tomography scan, Von Kossa staining, and alizarin red staining were performed to detect osteogenic differentiation ability. Moreover, immunohistochemistry and alkaline phosphatase (ALP) staining were used to assess the expression of Oc and Osx in femur tissues and ALP activity. At last, the expression of GNAS, osteogenic markers, and factors related to the Hippo signaling pathway was evaluated. Initially, the results displayed successful knockout of the GNAS gene from mice and BMSCs. Moreover, the data indicated that GNAS knockout inhibits expression of Oc, Osx, ALP, BMP-2, and Runx2, and ALP activity. Additionally, GNAS knockout promotes activation of the Hippo signaling pathway, so as to repress osteogenic differentiation. Collectively, depleted GNAS exerts an inhibitory role in osteogenic differentiation of MSCs by activating Hippo signaling pathway, providing a candidate mediator for osteoporosis.  相似文献   

17.
18.
The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS.  相似文献   

19.
Regeneration is widespread throughout the animal kingdom, but our molecular understanding of this process in adult animals remains poorly understood. Wnt/β-catenin signaling plays crucial roles throughout animal life from early development to adulthood. In intact and regenerating planarians, the regulation of Wnt/β-catenin signaling functions to maintain and specify anterior/posterior (A/P) identity. Here, we explore the expression kinetics and RNAi phenotypes for secreted members of the Wnt signaling pathway in the planarian Schmidtea mediterranea. Smed-wnt and sFRP expression during regeneration is surprisingly dynamic and reveals fundamental aspects of planarian biology that have been previously unappreciated. We show that after amputation, a wounding response precedes rapid re-organization of the A/P axis. Furthermore, cells throughout the body plan can mount this response and reassess their new A/P location in the complete absence of stem cells. While initial stages of the amputation response are stem cell independent, tissue remodeling and the integration of a new A/P address with anatomy are stem cell dependent. We also show that WNT5 functions in a reciprocal manner with SLIT to pattern the planarian mediolateral axis, while WNT11-2 patterns the posterior midline. Moreover, we perform an extensive phylogenetic analysis on the Smed-wnt genes using a method that combines and integrates both sequence and structural alignments, enabling us to place all nine genes into Wnt subfamilies for the first time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号