首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Hsu PC  Hodel MR  Thomas JW  Taylor LJ  Hagedorn CH  Hodel AE 《Biochemistry》2000,39(45):13730-13736
7-Methylguanosine (m(7)G), also known as the mRNA "cap", is used as a molecular tag in eukaryotic cells to mark the 5' end of messenger RNAs. The mRNA cap is required for several key events in gene expression in which the m(7)G moiety is specifically recognized by cellular proteins. The configurations of the m(7)G-binding pockets of a cellular (eIF4E) and a viral (VP39) cap-binding protein have been determined by X-ray crystallography. The binding energy has been hypothesized to result from a pi-pi stacking interaction between aromatic residues sandwiching the m(7)G base in addition to hydrogen bonds between the base and acidic protein side chains. To further understand the structural requirements for the specific recognition of an m(7)G mRNA cap, we determined the effects of amino acid substitutions in eIF4E and VP39 cap-binding sites on their affinity for m(7)GDP. The requirements for residues suggested to pi-pi stack and hydrogen bond with the m(7)G base were examined in each protein by measuring their affinities for m(7)GDP by fluorimetry. The results suggest that both eIF4E and VP39 require a complicated pattern of both orientation and identity of the stacking aromatic residues to permit the selective binding of m(7)GDP.  相似文献   

2.
Crystal structures have recently become available for two proteins (VP39 and eIF4E) complexed with their cognate ligand - the mRNA cap. Despite their total structural dissimilarity, both proteins bind N7-methylguanine between two parallel aromatic sidechains. The resulting stacked arrangement governs their high specificity for the alkylated form of the nucleobase.  相似文献   

3.
Worch R  Stolarski R 《Proteins》2008,71(4):2026-2037
Recognition of the ribonucleic acid 5' termini (RNA 5' cap) by a wide class of cap-binding proteins is largely accomplished by cation-pi stacking that involves the positively charged 7-methylguanine ring and aromatic amino acid side chains. Quantum calculations of the stacking energy were performed by means of MP2 perturbation method for binary and ternary associates composed of the 7-methylguanine moiety and tryptophan, tyrosine, or phenylalanine, in their spatial orientations known from the crystalline cap-protein complexes. The results clearly pointed to an enhancement of the stacking energy due to a net positive charge in the cap guanine moiety and allowed analysis of a role of various amino acids in stabilization of the complexes. Conformational flexibility of the aromatic amino acids taking part in binding ligands to a wide class of RNA-recognizing proteins, including the cap-binding proteins, was determined by regional order neural network (RONN) algorithm that provides results close to those of the crystallographic B-factors analysis. Interestingly, some of the tyrosines that are classified in general as "rigid" showed high flexibility when engaged in binding the cap to nuclear cap-binding protein complex CBC and to viral methyltransferase VP39. Parallel analyses of the binding energy and flexibility of the protein fragments engaged in the binding leads to understanding differences in molecular mechanisms of the cap recognition by various proteins, CBC compared with the eukaryotic initiation factor eIF4E, and enzymes vs. other protein factors.  相似文献   

4.
All eukaryotic nuclear transcribed mRNAs possess the cap structure, consisting of 7-methylguanosine linked by the 5'-5' triphosphate bridge to the first nucleoside. The goal of the present study is to dissect the enthalpy and entropy changes of association of the mRNA 5' cap with eIF4E into contributions originating from the interaction of 7-methylguanosine with tryptophan. The model results are discussed in the context of the thermodynamic parameters for the association of eIF4E with synthetic cap analogues.  相似文献   

5.
Abstract

All eukaryotic nuclear transcribed mRNAs possess the cap structure, consisting of 7-methylguanosine linked by the 5′-5′ triphosphate bridge to the first nucleoside. The goal of the present study is to dissect the enthalpy and entropy changes of association of the mRNA 5′ cap with eIF4E into contributions originating from the interaction of 7-methylguanosine with tryptophan. The model results are discussed in the context of the thermodynamic parameters for the association of eIF4E with synthetic cap analogues.  相似文献   

6.
Electric charge distribution in mRNA 5' cap terminus has been exhaustively characterized in respect to the affinity for cap-binding proteins. Formation of the stacked configuration of positively charged 7-methylguanine in between two aromatic amino acid rings, known as sandwich cation-pi stacking, is thought to be prerequisite for the specific recognition of the cap by eukaryotic initiation factor eIF4E; i.e., discrimination between the cap and nucleotides without the methyl group at N(7). Nuclear magnetic resonance spectroscopy of (15)N/(13)C-double-labeled 7-methylguanosine 5'-triphosphate and 7-methylguanosine, as well as their unsubstituted counterparts, GTP and guanosine, yielded characteristic changes of the electron-mediated spin-spin couplings and chemical shifts due to the methylation at N(7). The experimentally measured changes of the nuclear magnetic resonance parameters have been analyzed in respect to the electric charge distribution calculated by means of quantum chemical methods, and interpreted in terms of new proposed positive charge localization in the 7-methylguanine five-member ring.  相似文献   

7.
8.
During eukaryotic translation initiation, the 43 S ribosomal pre-initiation complex is recruited to the 5'-end of an mRNA through its interaction with the 7-methylguanosine cap, and it subsequently scans along the mRNA to locate the start codon. Both mRNA recruitment and scanning require the removal of secondary structure within the mRNA. Eukaryotic translation initiation factor 4A is an essential component of the translational machinery thought to participate in the clearing of secondary structural elements in the 5'-untranslated regions of mRNAs. eIF4A is part of the 5'-7-methylguanosine cap-binding complex, eIF4F, along with eIF4E, the cap-binding protein, and the scaffolding protein eIF4G. Here, we show that Saccharomyces cerevisiae eIF4F has a strong preference for unwinding an RNA duplex with a single-stranded 5'-overhang versus the same duplex with a 3'-overhang or without an overhang. In contrast, eIF4A on its own has little RNA substrate specificity. Using a series of deletion constructs of eIF4G, we demonstrate that its three previously elucidated RNA binding domains work together to provide eIF4F with its 5'-end specificity, both by promoting unwinding of substrates with 5'-overhangs and inhibiting unwinding of substrates with 3'-overhangs. Our data suggest that the RNA binding domains of eIF4G provide the S. cerevisiae eIF4F complex with a second mechanism, in addition to the eIF4E-cap interaction, for directing the binding of pre-initiation complexes to the 5'-ends of mRNAs and for biasing scanning in the 5' to 3' direction.  相似文献   

9.
The cap-binding protein eIF4E is the first in a chain of translation initiation factors that recruit 40S ribosomal subunits to the 5' end of eukaryotic mRNA. During cap-dependent translation, this protein binds to the 5'-terminal m(7)Gppp cap of the mRNA, as well as to the adaptor protein eIF4G. The latter then interacts with small ribosomal subunit-bound proteins, thereby promoting the mRNA recruitment process. Here, we show apo-eIF4E to be a protein that contains extensive unstructured regions, which are induced to fold upon recognition of the cap structure. Binding of eIF4G to apo-eIF4E likewise induces folding of the protein into a state that is similar to, but not identical with, that of cap-bound eIF4E. At the same time, binding of each of the binding partners of eIF4E modulates the kinetics with which it interacts with the other partner. We present structural, kinetic and mutagenesis data that allow us to deduce some of the detailed folding transitions that take place during the eIF4E interactions.  相似文献   

10.
Cap-binding proteins have been routinely isolated using m7GTP-Sepharose; however, this resin is inefficient for proteins such as DcpS (scavenger decapping enzyme), which interacts not only with the 7-methylguanosine, but also with the second cap base. In addition, DcpS purification may be hindered by the reduced resin capacity due to the ability of DcpS to hydrolyze m7GTP. Here, we report the synthesis of new affinity resins, m7GpCH2pp- and m7GpCH2ppA-Sepharoses, with attached cap analogs resistant to hydrolysis by DcpS. Biochemical tests showed that these matrices, as well as a hydrolyzable m7GpppA-Sepharose, bind recombinant mouse eIF4E(28-217) specifically and at high capacity. In addition, purification of cap-binding proteins from yeast extracts confirmed the presence of all expected cap-binding proteins, including DcpS in the case of m7GpCH2pp- and m7GpCH2ppA-Sepharoses. In contrast, binding studies in vitro demonstrated that recombinant human DcpS efficiently bound only m7GpCH2ppA-Sepharose. Our data prove the applicability of these novel resins, especially m7GpCH2ppA-Sepharose, in biochemical studies such as the isolation and identification of cap-binding proteins from different organisms.  相似文献   

11.

Background  

Argonaute (Ago) proteins interact with small regulatory RNAs to mediate gene regulatory pathways. A recent report by Kiriakidou et al. [1] describes an MC sequence region identified in Ago2 that displays similarity to the cap-binding motif in translation initiation factor 4E (eIF4E). In a cap-bound eIF4E structure, two important aromatic residues of the motif stack on either side of a 7-methylguanosine 5'-triphosphate (m7Gppp) base. The corresponding Ago2 aromatic residues (F450 and F505) were hypothesized to perform the same cap-binding function. However, the detected similarity between the MC sequence and the eIF4E cap-binding motif was questionable.  相似文献   

12.
13.
All eukaryotic cellular mRNAs contain a 5' m(7)GpppN cap. In addition to conferring stability to the mRNA, the cap is required for pre-mRNA splicing, nuclear export and translation by providing an anchor point for protein binding. In translation, the interaction between the cap and the eukaryotic initiation factor 4E (eIF4E) is important in the recruitment of the mRNAs to the ribosome. Human 4EHP (h4EHP) is a homologue of eIF4E. Like eIF4E it is able to bind the cap but it appears to play a different cellular role, possibly being involved in the fine-tuning of protein expression levels. Here we use X-ray crystallography and isothermal titration calorimetry (ITC) to investigate further the binding of cap analogues and peptides to h4EHP. m(7)GTP binds to 4EHP 200-fold more weakly than it does to eIF4E with the guanine base sandwiched by a tyrosine and a tryptophan instead of two tryptophan residues as seen in eIF4E. The tyrosine resides on a loop that is longer in h4EHP than in eIF4E. The consequent conformational difference between the proteins allows the tyrosine to mimic the six-membered ring of the tryptophan in eIF4E and adopt an orientation that is similar to that seen for equivalent residues in other non-homologous cap-binding proteins. In the absence of ligand the binding site is incompletely formed with one of the aromatic residues being disordered and the side-chain of the other adopting a novel conformation. A peptide derived from the eIF4E inhibitory protein, 4E-BP1 binds h4EHP 100-fold less strongly than eIF4E but in a similar manner. Overall the data, combined with sequence analyses of 4EHP from evolutionary diverse species, strongly support the hypothesis that 4EHP plays a physiological role utilizing both cap-binding and protein-binding functions but which is distinct from eIF4E.  相似文献   

14.
In higher eukaryotes the biogenesis of spliceosomal UsnRNPs involves a nucleocytoplasmic shuttling cycle. After the m7G-cap-dependent export of the snRNAs U1, U2, U4 and U5 to the cytoplasm, each of these snRNAs associates with seven Sm proteins. Subsequently, the m7G-cap is hypermethylated to the 2,2,7-trimethylguanosine (m3G)-cap. The import adaptor snurportin1 recognises the m3G-cap and facilitates the nuclear import of the UsnRNPs by binding to importin-beta. Here we report the crystal structure of the m3G-cap-binding domain of snurportin1 with bound m3GpppG at 2.4 A resolution, revealing a structural similarity to the mRNA-guanyly-transferase. Snurportin1 binds both the hypermethylated cap and the first nucleotide of the RNA in a stacked conformation. This binding mode differs significantly from that of the m7G-cap-binding proteins Cap-binding protein 20 (CBP20), eukaryotic initiation factor 4E (eIF4E) and viral protein 39 (VP39). The specificity of the m3G-cap recognition by snurportin1 was evaluated by fluorescence spectroscopy, demonstrating the importance of a highly solvent exposed tryptophan for the discrimination of m7G-capped RNAs. The critical role of this tryptophan and as well of a tryptophan continuing the RNA base stack was confirmed by nuclear import assays and cap-binding activity tests using several snurportin1 mutants.  相似文献   

15.
Mir MA  Panganiban AT 《The EMBO journal》2008,27(23):3129-3139
The eIF4F cap-binding complex mediates the initiation of cellular mRNA translation. eIF4F is composed of eIF4E, which binds to the mRNA cap, eIF4G, which indirectly links the mRNA cap with the 43S pre-initiation complex, and eIF4A, which is a helicase necessary for initiation. Viral nucleocapsid proteins (N) function in both genome replication and RNA encapsidation. Surprisingly, we find that hantavirus N has multiple intrinsic activities that mimic and substitute for each of the three peptides of the cap-binding complex thereby enhancing the translation of viral mRNA. N binds with high affinity to the mRNA cap replacing eIF4E. N binds directly to the 43S pre-initiation complex facilitating loading of ribosomes onto capped mRNA functionally replacing eIF4G. Finally, N obviates the requirement for the helicase, eIF4A. The expression of a multifaceted viral protein that functionally supplants the cellular cap-binding complex is a unique strategy for viral mRNA translation initiation. The ability of N to directly mediate translation initiation would ensure the efficient translation of viral mRNA.  相似文献   

16.
Mazza C  Segref A  Mattaj IW  Cusack S 《The EMBO journal》2002,21(20):5548-5557
The heterodimeric nuclear cap-binding complex (CBC) binds to the 5' cap structure of RNAs in the nucleus and plays a central role in their diverse maturation steps. We describe the crystal structure at 2.1 A resolution of human CBC bound to an m(7)GpppG cap analogue. Comparison with the structure of uncomplexed CBC shows that cap binding induces co-operative folding around the dinucleotide of some 50 residues from the N- and C-terminal extensions to the central RNP domain of the small subunit CBP20. The cap-bound conformation of CBP20 is stabilized by an intricate network of interactions both to the ligand and within the subunit, as well as new interactions of the CBP20 N-terminal tail with the large subunit CBP80. Although the structure is very different from that of other known cap-binding proteins, such as the cytoplasmic cap-binding protein eIF4E, specificity for the methylated guanosine again is achieved by sandwiching the base between two aromatic residues, in this case two conserved tyrosines. Implications for the transfer of capped mRNAs to eIF4E, required for translation initiation, are discussed.  相似文献   

17.
The initiation of translation in eukaryotes requires a suite of eIFs that include the cap-binding complex, eIF4F. eIF4F is comprised of the subunits eIF4G and eIF4E and often the helicase, eIF4A. The eIF4G subunit serves as an assembly point for other initiation factors, whereas eIF4E binds to the 7-methyl guanosine cap of mRNA. Plants have an isozyme form of eIF4F (eIFiso4F) with comparable subunits, eIFiso4E and eIFiso4G. Plant eIF4A is very loosely associated with the plant cap-binding complexes. The specificity of interaction of the individual subunits of the two complexes was previously unknown. To address this issue, mixed complexes (eIF4E-eIFiso4G or eIFiso4E-eIF4G) were expressed and purified from Escherichia coli for biochemical analysis. The activity of the mixed complexes in in vitro translation assays correlated with the large subunit of the respective correct complex. These results suggest that the eIF4G or eIFiso4G subunits influence translational efficiency more than the cap-binding subunits. The translation assays also showed varying responses of the mRNA templates to eIF4F or eIFiso4F, suggesting that some level of mRNA discrimination is possible. The dissociation constants for the correct complexes have K(D) values in the subnanomolar range, whereas the mixed complexes were found to have K(D) values in the ~10 nm range. Displacement assays showed that the correct binding partner readily displaces the incorrect binding partner in a manner consistent with the difference in K(D) values. These results show molecular specificity for the formation of plant eIF4F and eIFiso4F complexes and suggest a role in mRNA discrimination during initiation of translation.  相似文献   

18.
The activity of the eukaryotic translation initiation factor eIF4E is modulated through conformational response to its ligands. For example, eIF4G and eIF4E-binding proteins (4E-BPs) modulate cap affinity, and thus physiological activity of eIF4E, by binding a site distal to the 7-methylguanosine cap-binding site. Further, cap binding substantially modulates eIF4E's affinity for eIF4G and the 4E-BPs. To date, only cap-bound eIF4E structures were reported. In the absence of structural information on the apo form, the molecular underpinnings of this conformational response mechanism cannot be established. We report here the first cap-free eIF4E structure. Apo-eIF4E exhibits structural differences in the cap-binding site and dorsal surface relative to cap-eIF4E. Analysis of structure and dynamics of apo-eIF4E, and changes observed upon ligand binding, reveal a molecular basis for eIF4E's conformational response to these ligands. In particular, alterations in the S4-H4 loop, distal to either the cap or eIF4G binding sites, appear key to modulating these effects. Mutation in this loop mimics these effects. Overall, our studies have important implications for the regulation of eIF4E.  相似文献   

19.
In this study, we document that the overall rate of protein synthesis decreases during in vitro maturation (IVM) of pig oocytes despite enhanced formation of the 5' cap structure eIF4F. Within somatic/interphase cells, formation of the eIF4F protein complex correlates very well with overall rates of protein translation, and the formation of this complex is controlled primarily by the availability of the 5' cap binding protein eIF4E. We show that the eIF4E inhibitory protein, 4E-BP1, becomes phosphorylated during IVM, which results in gradual release of eIF4E from 4E-BP1, as documented by immunoprecipitation analyses. Isoelectric focusing and Western blotting experiments show conclusively that eIF4E becomes gradually phosphorylated with a maximum at metaphase II (M II). The activity of eIF4E and its ability to bind mRNA also increases during oocyte maturation as documented in experiments with m7-methyl GTP-Sepharose, which mimics the cap structure of mRNA. Complementary analysis of flow-through fraction for 4E-BP1, and eIF4G proteins additionally provides evidence for enhanced formation of cap-binding protein complex eIF4F. Altogether, our results bring new insights to the regulation of translation initiation during meiotic division, and more specifically clarify that 4E-BP1 hyper-phosphorylation is not the cause of the observed suppression of overall translation rates.  相似文献   

20.
Recognition of the 5' cap by the eukaryotic initiation factor 4E (eIF4E) is the rate-limiting step in the ribosome recruitment to mRNAs. The regular cap consists of 7-monomethylguanosine (MMG) linked by a 5'-5' triphosphate bridge to the first transcribed nucleoside, while some primitive eukaryotes possess a N (2), N (2),7-trimethylguanosine (TMG) cap structure as a result of trans splicing. Mammalian eIF4E is highly specific to the MMG form of the cap in terms of association constants and thermodynamic driving force. We have investigated conformational changes of eIF4E induced by interaction with two cap analogues, 7-methyl-GTP and N (2), N (2),7-trimethyl-GTP. Hydrogen-deuterium exchange and electrospray mass spectrometry were applied to probe local dynamics of murine eIF4E in the apo and cap-bound forms. The data show that the cap binding induces long-range conformational changes in the protein, not only in the cap-binding pocket but also in a distant region of the 4E-BP/eIF4G binding site. Formation of the complex with 7-methyl-GTP makes the eIF4E structure more compact, while binding of N (2), N (2),7-trimethyl-GTP leads to higher solvent accessibility of the protein backbone in comparison with the apo form. The results suggest that the additional double methylation at the N (2)-amino group of the cap causes sterical effects upon binding to mammalian eIF4E which influence the overall solution dynamics of the protein, thus precluding formation of a tight complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号