首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 927 毫秒
1.
O-(alpha-D-Mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----3)- O- [(alpha-D-mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----6)]- O- (alpha-D-mannopyranosyl)-(1----6)-O-(beta-D-mannopyranosyl)-(1----4)-O-( 2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-2-deoxy- glucopyranose, an octasaccharide fragment of high-mannose type glycan of glycoproteins, was synthesized. Crucial glycosylation of trisaccharide intermediate, benzyl O-(2,4-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(2-acetamido-3,6-di -O- benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-3,6-di-O-benz yl-2- deoxy-beta-D-glucopyranoside, was successful only with a di-O-acetyltetradeca-O-benzyl-D-mannopentaosyl chloride. The use of the corresponding hexadeca-O-acetyl-D-mannopentaosyl bromide did not give the desired product.  相似文献   

2.
The serotype-specific capsular polysaccharide from two strains of Pasteurella haemolytica serotype A7 organisms was purified and characterized by chemical analysis and by 1H and 13C NMR spectroscopy using one- and two-dimensional methods. The polymer has the repeating unit----3)-beta-2-acetamido-2-deoxygalactopyranose-(1----3)-alpha- 2-acetamido- 2-deoxy-6-O-acetyl-glucopyranose-(1-phosphate----. It was immunogenic (capable of eliciting antibodies) for sheep. Chemical removal of O-acetyl groups destroyed both the ability of the polymer to adhere to sheep erythrocytes at neutral pH and the ability to form immune precipitates with specific antisera. Studies using the protein A-gold technique in the electron microscope showed the polysaccharide to be peripherally localized on the bacterial surface.  相似文献   

3.
Capsular polysaccharide from two strains of Pasteurella haemolytica serotype T15 was purified and characterized by chemical analysis and NMR spectroscopy. The polymer, a teichoic acid, proved to be very similar in structure to the capsular polysaccharide of P. haemolytica serotype T4 and identical to the previously described K62 (K2ab) capsular polysaccharide of Escherichia coli, and the capsular polysaccharide of Neisseria meningitidis serotype H, i.e. ----(2-glycerol-3)----(phosphate)----(4-alpha-D-galactopyranose -1)---- with partial O-acetylation on the galactose residues. Electron microscopy with Protein A-gold labelled antisera showed that the polysaccharide was peripherally located on the surface of all three organisms. Chemical removal of O-acetyl groups from the polysaccharide yielded a structure identical to that previously described for E. coli K2 (K2a). Both O-acetylated and de-O-acetylated P. haemolytica T15 polymers, when absorbed on to sheep erythrocytes in passive haemagglutination assays, yielded identical antibody titres with sera raised against P. haemolytica T15, E. coli K2 or N. meningitidis H whole cells. De-O-acetylation of the Pasteurella polysaccharide influenced its precipitability with immune sera, but this could not be related to the absence of O-acetyl groups because the non-acetylated E. coli K2 polymer readily precipitated with a line of 'identity' with the acetylated P. haemolytica T15 polymer.  相似文献   

4.
The serotype-specific capsular polysaccharide from two strains of Pasteurella haemolytica serotype T4 organisms was purified and characterized by chemical analysis and NMR spectroscopy. The polymer, a teichoic acid, has the backbone structure ----(2-glycerol-l)----(phosphate)----(6-alpha-D-galactose-1)---- and is partially O-acetylated on the C2 and C3 galactose residues. Chemical removal of O-acetyl groups from the polysaccharide destroyed both its ability to precipitate with antiserum raised against killed whole serotype T4 organisms and its ability to adhere to sheep erythrocytes in passive haemagglutination experiments. Attempts to elicit antisera using the purified polymer were unsuccessful but a partially purified material was immunogenic.  相似文献   

5.
A facile approach towards the synthesis of 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-2-acetamido-2-deoxy-beta-D-glucopyra nos ide, 2-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)- (1----6)-2-acetamido-2-deoxy-alpha-D-galactopyranoside, 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)- (1----6)-alpha-D-mannopyranoside, and 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)-(1----6)-beta-D-galactopyranoside has been accomplished through the development and use of methyl 3,4-O-isopropylidene-2-O-(4-methoxybenzyl)-1-thio-beta-L-fucopyranoside as the glycosyl donor.  相似文献   

6.
In the synthesis of 8-methoxycarbonyloctyl O-(alpha-D-galactopyranosyl)-(1----3)-O-(2-acetamido-2-deoxy-beta-D- mannopyranosyl)-(1----4)-O-(beta-D-glucopyranosyl)-(1----4)-alpha-D- glucopyranoside, which represents a component of the capsular polysaccharide of Streptococcus pneumoniae type 9V, the key step was the coupling of alpha-D-Galp-(1----3)-beta-D-ManpNAc-(1----4)-D-Glc as glycosyl donor with 8-ethoxy-carbonyloctyl 6-O-acetyl-2,3-di-O-benzyl-alpha-D-glucopyranoside as glycosyl acceptor by use of the imidate method. Only the beta-imidate of the trisaccharide could be employed in this glycosidation reaction to give stereoselectively the tetrasaccharide in high yield. The alpha-imidate of the trisaccharide led to hydrolysis of the imidate group.  相似文献   

7.
Structure of the type 5 capsular polysaccharide of Staphylococcus aureus   总被引:7,自引:0,他引:7  
The Staphylococcus aureus type 5 capsular polysaccharide is composed of 2-acetamido-2-deoxy-L-fucose (1 part), 2-acetamido-2-deoxy-D-fucose (1 part), and 2-acetamido-2-deoxy-D-mannuronic acid (1 part). On the basis of methylation analysis, optical rotation, high-field one- and two-dimensional 1H- and 13C-n.m.r. experiments, and selective cleavage with 70% aqueous hydrogen fluoride, the polysaccharide was found to be a partially O-acetylated (50%) polymer of the repeating trisaccharide unit, [----4)-3-O-Ac-beta-D-ManpNAcA-(1----4)-a-L-FucpNAc-(1----3) -beta-D-FucpNAc-(1----]n.  相似文献   

8.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

9.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

10.
For the synthesis of the threefold-branched pentasaccharide, O-alpha-D-mannopyranosyl-(1----3)-O-[(2-acetamido-2-deoxy-beta-D- glucopyranosyl)-(1----4)]-O-[alpha-D-mannopyranosyl-(1----6)]-O-beta-D- mannopyranosyl-(1----4)-2-acetamido-2-deoxy-D-glucopyranose (20), which is a part of the structure of the N-glycoproteins, the disaccharide 4-O-(4-O-acetyl-3,6-di-O-allyl-2-O-benzyl-beta-D-mannopyranosyl) -1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranose was synthesized as a key compound by use of the silver silicate-catalyst procedure. After elimination of the 4-O-acetyl group, a 2-acetamido-2-deoxy-beta-D-glucopyranosyl group was attached according to the phthalimido method. Further elimination of the allyl groups allowed the linkage of two alpha-D-mannopyranosyl groups in the presence of mercury salt. A deblocking sequence consisting of four steps gave 20.  相似文献   

11.
The dimeric Lewis X hexasaccharide p-trifluoroacetamidophenylethyl O-beta-D-galactopyranosyl-(1----4)-O-[alpha-L-fucopyranosyl-(1----3)]-O- (2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----3)-O-beta-D-galactopyrano syl- (1----4)-O-[alpha-L-fucopyranosyl-(1----3)]-2-acetamido-2-deoxy-beta-D- glucopyranoside (14), which is a derivative of a tumor-associated glycolipid, was synthesized from thioglycoside intermediates. A protected disaccharide was used as a key-intermediate for synthesis of the p-nitrophenylethyl glycoside of suitably protected O-beta-D-Galp-(1----4)-O-beta-D-GlcpN-(1----3)-O-beta-D-Galp-(1--- -4)-beta-D- GlcpN, which, after selective deblocking, was di-L-fucosylated and deprotected to give 14.  相似文献   

12.
A stereocontrolled synthesis of beta-D-GlcpNAc6SO3-(1----3)-beta-D-Galp6SO3-(1----4)-beta-D- GlcpNAc6SO3- (1----3)-D-Galp, was achieved by use of benzyl O-(2-acetamido-3,4 di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-beta-D- glucopyranosyl)-(1----3)-O-(2,4-di-O-tert-butyldiphenylsilyl-beta- D- galactopyranosyl-(1----4)-O-(2-acetamido-3-O-benzyl-2-deoxy-6-O-p-methox yphenyl - beta-D-glucopyranosyl)-(1----3)-2,4,6-tri-O-benzyl-beta-D-galactopyranos ide as a key intermediate, which was in turn prepared by employing two glycosyl donors, 3,4-di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D- glucopyranosyl trichloroacetimidate and O-(3,6-di-O-acetyl-2,4-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3-O - benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D-glucopyranosyl trichloroacetimidate, and a glycosyl acceptor, benzyl 2,4,6-tri-O-benzyl-beta-D-galactopyranoside.  相似文献   

13.
Virulence of Vibrio vulnificus has been strongly associated with encapsulation and an opaque colony morphology. Capsular polysaccharide was purified from a whole-cell, phosphate-buffered saline-extracted preparation of the opaque, virulent phase of V. vulnificus M06-24 (M06-24/O) by dialysis, centrifugation, enzymatic digestion, and phenol-chloroform extraction. Nuclear magnetic resonance spectroscopic analysis of the purified polysaccharide showed that the polymer was composed of a repeating structure with four sugar residues per repeating subunit: three residues of 2-acetamido-2,6-dideoxyhexopyranose in the alpha-gluco configuration (QuiNAc) and an additional residue of 2-acetamido hexouronate in the alpha-galactopyranose configuration (GalNAcA). The complete carbohydrate structure of the polysaccharide was determined by heteronuclear nuclear magnetic resonance spectroscopy and by high-performance anion-exchange chromatography. The 1H and 13C nuclear magnetic resonance spectra were completely assigned, and vicinal coupling relationships were used to establish the stereochemistry of each sugar residue, its anomeric configuration, and the positions of the glycosidic linkages. The complete structure is: [----3) QuipNAc alpha-(1----3)-GalpNAcA alpha-(1----3)-QuipNAc alpha-(1----]n QuipNAc alpha-(1----4)-increases The polysaccharide was produced by a translucent phase variant of M06-24 (M06-24/T) but not by a translucent, acapsular transposon mutant (CVD752). Antibodies to the polysaccharide were demonstrable in serum from rabbits inoculated with M06-24/O.  相似文献   

14.
Glycosylation of methyl 2,4-di-O-benzoyl-alpha-L-rhamnopyranoside with 2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl bromide gave methyl 2,4-di-O-benzoyl-3-O-(2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl) -alpha-L-rhamnopyranoside (4) in 93% yield. Conversion of 4 into the corresponding glycosyl bromide was accomplished with dibromomethyl methyl ether. Under Koenigs-Knorr conditions, this bromide reacted with 8-(methoxycarbonyl)octyl 2-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-glycopyranosyl)- 3,4-di-O- benzyl-alpha-L-rhamnopyranoside, to provide the protected tetrasaccharide in 91% yield. Removal of blocking groups gave 8-(methoxycarbonyl)octyl O-alpha-L-rhamnopyranosyl-(1---- 3)-O-alpha-L-rhamnopyranosyl-(1---- 3)-O-2-acetamido-2-deoxy-beta-D-glucopyranosyl-(1----2)-alpha-L- rhamnopyranoside. Together with previously synthesized tetrasaccharides of the Shigella flexneri Y O-antigen, this oligosaccharide has been used to study the conformation of O-antigens and to assist in the selection of S. flexneri, variant Y, specific monoclonal antibodies.  相似文献   

15.
The tetrasaccharides O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D- mannopyranosyl-(1----6)]-O-(4-deoxy-beta-D-lyxo-hexopyranosyl)-(1- ---4)-2- acetamido-2-deoxy-alpha, beta-D-glycopyranose (22) and O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D-mannopyranosyl-(1----6)]-O- beta-D-talopyranosyl-(1----4)-2-acetamido-2-deoxy-alpha, beta-D- glucopyranose (37), closely related to the tetrasaccharide core structure of N-glycoproteins, were synthesized. Starting with 1,6-anhydro-2,3-di-O-isopropylidene-beta-D-mannopyranose, the glycosyl donors 3,6-di-O-acetyl-2-O-benzyl-2,4-dideoxy-alpha-D-lyxo- hexopyranosyl bromide (10) and 3,6-di-O-acetyl-2,4-di-O-benzyl-alpha-D-talopyranosyl bromide (30), were obtained in good yield. Coupling of 10 or 30 with 1,6-anhydro-2-azido-3-O-benzyl-beta-D-glucopyranose to give, respectively, the disaccharides 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2-O-benzyl-4 -deoxy- beta-D-lyxo-hexopyranosyl)-beta-D-glucopyranose and 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2,4-di-O-ben zyl- beta-D-talopyranosyl)-beta-D-glucopyranose was achieved with good selectivity by catalysis with silver silicate. Simultaneous glycosylation of OH-3' and OH-6' of the respective disaccharides with 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride yielded tetrasaccharide derivatives, which were deblocked into the desired tetrasaccharides 22 and 37.  相似文献   

16.
An efficiently stereocontrolled total synthesis of GM3 alpha-D-Neup5Ac-(2----3)-beta-D-Galp-(1----4)-beta-D-Glcp-(1----1) -Cer was achieved by employing both methyl 5-acetamido-4,7,8,9-tetra-O-benzyl-2-bromo-2,3,5-trideoxy-3- phenylthio-D-erythro-beta-L-gluco-2-nonulopyranosonate for the key sialylation step, and O-[methyl(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O- acetyl-beta-D-galactopyranosyl-(1----4)-3,6-di-O-acetyl-2-O-pivaloyl- alpha-D-glucopyranosyl trichloroacetimidate and fluoride for the key coupling step with a ceramide derivative. These two steps were significantly altered and improved in comparison with our previous synthesis that had been executed without use of stereocontrolling auxiliaries. GM3 was obtained in 4.5% overall yield in 19 steps starting from allyl O-(2,6-di-O-acetyl-3,4-O-isopropylidene-beta-D-galactopyranosyl)-(1----4 )-2,3,6-tri-O-acetyl-beta-D-glucopyranoside.  相似文献   

17.
Glycosylation of the readily accessible benzyl 2-acetamido-6-O-benzyl-2-deoxy-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha- D- glucopyranoside with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl chloride (2), using the silver triflate method in the absence of a base, afforded 65-70% of the fully protected [beta-D-GlcNPhth-(1----4)-MurNAc] methyl ester derivative 4, the structure of which was ascertained on the basis of 500-MHz 1H-n.m.r. data. 2,2'-Dideoxy-2,2'-diphthalimido-beta,beta-trehalose hexa-acetate was a by-product. Removal of the Phth group from 4, followed by acetylation, yielded 90% of the acetylated 1,6-di-O-benzyl derivative 5, which, on saponification and catalytic hydrogenation, afforded 2-acetamido-4-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1- carboxyethyl]-2-deoxy-D-glucopyranose. Similarly, 5 was converted into the acetylated methyl ester derivative, which, on selective removal of the methyl ester group, gave benzyl 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-6-O-benzyl-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside. An alternative route for the preparation of 2 is described.  相似文献   

18.
A fragment of Micrococcus lysodeikticus cell-wall obtained by cetylpyridinium recipitation from the nondialyzable portion of the degradation products of egg-white lysozyme was studied by the periodate oxidation and methylation procedures. The fragment consists of a polysaccharide chain composed of about 40 repeating (1 leads to 4)-O-(2-acetamido-2-deoxy-beta-D-mannopyranosyluronic acid)-(1 leads to 6)-O-(alpha-D-glucopyranosyl) residues with D-glucopyranosyl residues at both ends. The alpha-D-glucopyranose residue at the reducing end is linked to a phosphate group that is also linked to C-6 of a 2-acetamido-3-O-(D-1-carboxyethyl)-2-deoxy-beta-D-glucopyranosyl residue of a peptidoglycan chain composed of four repeating (1 leads to 4)-O-[2-acetamido-3-O-(D-1-carboxyethyl)-2-deoxy-beta-D-glucopyranosyl] residues. The peptidoglycan chain has, as nonreducing group, a 2-acetamido-2-deoxy-beta-D-glucopyranosyl group, and, as reducing residue, a 2-acetamido-3-O-(D-1-carboxytheyl)-2-deoxy-beta-D-glucose residue.  相似文献   

19.
Structure of the O-antigen of Francisella tularensis strain 15.   总被引:2,自引:0,他引:2  
The O-specific polysaccharide, obtained by mild acid degradation of the lipopolysaccharide of Francisella tularensis strain 15, contained 2-acetamido-2,6-dideoxy-D-glucose (D-QuiNAc), 4,6-dideoxy-4-formamido-D-glucose (D-Qui4NFm), and 2-acetamido-2-deoxy-D-galacturonamide (D-GalNAcAN) in the ratios 1:1:2. Tri- and tetra-saccharide fragments were obtained on treatment of the polysaccharide with anhydrous hydrogen fluoride and partial hydrolysis with 0.1 M hydrochloric acid, respectively. On the basis of 1H- and 13C-n.m.r. spectroscopy of the polysaccharide and the saccharides, it was concluded that the O-antigen had the structure: ----4)-alpha-D-GalpNAcAN-(1----4)-alpha-D-GalpNAcAN-(1----3) -beta-D-QuipNAc-(1----2)-beta-D-Quip4NFm-(1----. This O-antigen is related in structure to those of Pseudomonas aeruginosa O6, immunotype 1, and IID 1008, and Shigella dysenteriae type 7.  相似文献   

20.
Lipopolysaccharides were isolated from the phenol layer on aqueous phenol extraction of cells of Pseudomonas aeruginosa O11 (Lányi classification), strains 170021 and 170040. On mild acid degradation of the lipopolysaccharides, with the subsequent gel-filtration on Sephadex G-50, neutral O-specific polysaccharides made up of 6-deoxysugars alone were obtained. Two 2-acetamido-2,6-dideoxy-L-galactose (LFucNAc), 2-acetamido-2,6-dideoxy-D-glucose (DQuiNAc) and L-rhamnose (LRha) residues were found to be the components of the strain 170021 polysaccharide repeating units; those of strain 170040 contained the same monosaccharides, but, instead of 2-acetamido-2,6-dideoxy-D-glucose residue, that of 2-acetamido-2,6-dideoxy-D-galactose (DFucNAc) was present. On the basis of the 13C nuclear magnetic resonance data, methylation analysis and three successive Smith degradations the following structures were determined for the polysaccharide repeating units: strain 170021----2) LRha(alpha 1----3)LFucNAc(alpha 1----3)LFucNAc(alpha 1----3)DQuiNAc(beta 1----; strain 170040,----2)LRha(alpha 1----3)LFucNAc-(alpha 1----3)LFucNAc(alpha 1----3)DFucNAc(beta 1----; differing from one another by configuration of C-4 of 2-acetamido-2,6-dideoxy-D-hexopyranose only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号