首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of "mantled" somaclonal variants (approx. 5%), which display alterations in floral organ structure, among populations of somatic embryo-derived oil palms ( Elaeis guineensis Jacq.) currently hampers any scaling-up of clonal plant micropropagation. As a first step towards the identification of abnormality-discriminating markers, we have screened a set of 27 oil palm cDNA probes for methylation-sensitive restriction fragment length polymorphisms (RFLPs) using callus genomic DNA digested with the isoschizomeric enzymes MspI and HpaII. Only two probes (CPHO62 and -63) were found to differentiate reproducibly in two different genotypic backgrounds between nodular compact calli (NCC) and fast-growing calli (FGC), which generate 5% and 100% "mantled" plantlets, respectively. Comparative analyses were then conducted on DNA from inflorescences and leaves of normal and abnormal adult regenerants. With both probes, the observed methylation patterns were strongly clone-dependent and monomorphic with respect to the phenotype of the regenerants, except for the type-specific banding pattern obtained with the CPHO62 probe on material from the LMC3 clonal offspring. The results presented here mirror the higher difference in genomic DNA methylation observed between normal and abnormal embryogenic calli when compared to more differentiated plant material. Moreover, they reinforce the paramount interest of NCC and FGC callus lines as a material of choice in the search for early epigenetic markers of the "mantled" somaclonal variation. The potential use of methylation-sensitive RFLPs for the early detection of somaclonal variation at early stages of the micropropagation process is discussed.  相似文献   

2.
Rye (Secale cereale L.) is a species that has shown high rates of somaclonal variation when plants obtained by in vitro culture were analysed using different techniques. In this study, using methylation-sensitive amplified polymorphism (MSAP) markers, we analysed the cytosine methylation status at genomic level of regenerated plants of rye that were obtained by somatic embryogenesis. Such plants were originated from three different cell lines and the results were compared with the data obtained from the control plants grown from seeds of the same cultivar and lot. A similar total number of MSAP markers was observed in the regenerated (937) and control plants (1,022), while the mean number detected per plant was significantly higher in regenerated (554.43) than in control plants (356.00). The analysis indicated conservation of the number of partially-methylated CCGG/GGCC sites for all type of plants. However the mean number of non-methylated sites was near twofold in the regenerated plants (442.48) than in control plants (248.19). Methylation changes have been detected in all the regenerated plants when compared within cell lines, with an average frequency of 9.01 % of the detected markers. We also observed that regenerated plants from one or several cell lines shared methylation changes at the same locus pointing to a non-random behaviour of the changes in genomic methylation.  相似文献   

3.
Paspalum notatum Flügge is a grass species organized as an agamic complex. The objective of the current research was to survey the frequencies and variation of cytosine methylation at CCGG sequences in diploid and tetraploid genotypes, and to determine the occurrence of methylation changes associated with tetraploidization by using methylation-sensitive amplification polymorphism (MSAP) markers. No differences were found in the average proportions of methylated CCGG sites between cytotypes, but methylation patterns were significantly more variable in tetraploids. In both groups of plants, epigenetic and non-epigenetic variation correlated significantly when compared by Mantel tests. The evaluation of 159 common MSAP markers showed that 18.86 % of them differed in their methylation status in the different ploidies. Dendrogram analysis, reflecting epigenetic distances, showed that the four diploids and one experimentally-obtained sexually-reproducing tetraploid, grouped together. MSAP analysis performed on a diploid plant and its autotetraploid derivative showed that new epialleles emerged after tetraploidization. Sequencing of several MASP markers showed homologies with low copy genes, non-coding sequences and transposon/retrotransposon elements.  相似文献   

4.
Abstract: The correlation between environmental stress and DNA methylation has been studied by following the methylation status of cytosine residues in the DNA of pea root tips exposed to water deficit. DNA methylation was evaluated by two complementary approaches: (i) immunolabelling by means of a monoclonal antibody against 5-methylcytosine; (ii) MSAP (Methylation-Sensitive Amplified Polymorphism) to verify if methylation and de-methylation in response to water deficit may be related to specific DNA sequences. Immunolabelling showed that water stress induces cytosine hypermethylation in the pea genome. Regarding the CCGG target sequence, an increase in methylation specifically in the second cytosine (about 40 % of total site investigated) was revealed by MSAP analyses. In addition, MSAP band profile detected in three independent repetitions was highly reproducible suggesting that, at least for the CCGG target sequence, methylation was addressed to specific DNA sequences.  相似文献   

5.
DNA methylation plays an important role in gene expression regulation during biological development in plants. This study adopted methylation sensitive amplification polymorphism (MSAP) to compare the levels and patterns of cytosine methylation at CCGG sites in maize genome. The tissues assayed included seedlings and tassels of C-type cytoplasmic male sterility (C Huang Zao Si, C 48-2) and its maintainer lines. For each tissue, both C Huang Zao Si and C 48-2 were more methylated than their corresponding maintainers not only on MSAP ratios, but also on the full methylation levels. In different nuclear backgrounds, the two tissues were more methylated in Huang Zao Si than in 48-2, although the two lines shared the same cytoplasm. Full methylation of internal cytosine was the dominant type in the maize genome. In addition, four different classes of methylation patterns were identified in tassels between C-CMS lines and their maintainer lines; these were specific-methylation, demethylation, hypo-methylation, and hyper-methylation. The results obtained demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and suggested the possible association between DNA methylation polymorphism and C-type cytoplasmic male sterility.  相似文献   

6.
以高粱(Sorghum bicolor(L.)Moench)品种‘B_2V_4’和‘1383-2’杂交获得的F_2群体为材料,通过SSR和MSAP标记检测高粱基因组差异,构建其甲基化遗传连锁群。结果显示,高粱甲基化连锁群LGC含有3个SSR标记和23个甲基化标记,覆盖高粱基因组44.3 cM;甲基化连锁群LGD含有4个SSR标记和8个甲基化标记,覆盖高粱基因组46.2 cM。LGC上甲基化位点仅来源于EcoRⅠ/MspⅠ酶切组合,而LGD上有来源于EcoRⅠ/MspⅠ和EcoRⅠ/HpaⅡ两种酶切组合的甲基化位点。在LGC连锁群Xtxp 69附近检测到一个密集的甲基化位点区域。研究结果表明MSAP标记可以快速检测植物基因组甲基化差异,适用于构建甲基化连锁群。  相似文献   

7.
Sogatella furcifera is a major rice pest with wing dimorphism . DNA methylation is an important epigenetic modification that plays a role in gene regulation and phenotype variation in most organisms. The objective of the current research was to survey the frequencies and variation of cytosine methylation at CCGG sequences in macropterous female adults (MFA) and brachypterous female adults (BFA) of S. furcifera, and to determine the occurrence of methylation changes associated with wing phenotypes by using methylation‐sensitive amplification polymorphism (MSAP). No differences were found in the average proportions of methylated CCGG sites between MFA and BFA, but there were significant differences for methylation patterns between MFA and BFA. The fully methylated ratio was 5.81% in BFA, much higher than 2.40% in MFA; while the hemi‐methylated ratio was 4.35% in BFA, much lower than 8.35% in MFA. These results provide circumstantial evidence that DNA methylation might be related to wing phenotype variation in S. furcifera. We also cloned and got 14 satisfactory sequences, which displayed variable cytosine methylation patterns between MFA and BFA. All these data will facilitate the researches on the epigenetic mechanisms of insect wing polymorphism. genesis 51:819–826. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
A new image of plantain diversity assessed by SSR,AFLP and MSAP markers   总被引:7,自引:0,他引:7  
Using both SSR and AFLP markers, the genetic diversity of 30 plantains constituting a representative sample of the phenotypic diversity was assessed. The results confirmed a very narrow genetic base of this cultivar group. SSR and AFLP data support the hypothesis that these cultivars may have arisen from vegetative multiplication of a single seed. MSAP were used to survey cytosine methylation status at CCGG sites in order to obtain an alternative source of diversity data. A higher degree of polymorphism was revealed allowing the classification of the samples into three clusters. No correlation was observed between the phenotypic classification and methylation diversity. Implications for breeding programs are discussed.  相似文献   

9.
Methylation of DNA cytosines affects whether transposons are silenced and genes are expressed, and is a major epigenetic mechanism whereby plants respond to environmental change. Analyses of methylation‐sensitive amplification polymorphism (MS‐AFLP or MSAP) have been often used to assess methyl‐cytosine changes in response to stress treatments and, more recently, in ecological studies of wild plant populations. MSAP technique does not require a sequenced reference genome and provides many anonymous loci randomly distributed over the genome for which the methylation status can be ascertained. Scoring of MSAP data, however, is not straightforward, and efforts are still required to standardize this step to make use of the potential to distinguish between methylation at different nucleotide contexts. Furthermore, it is not known how accurately MSAP infers genome‐wide cytosine methylation levels in plants. Here, we analyse the relationship between MSAP results and the percentage of global cytosine methylation in genomic DNA obtained by HPLC analysis. A screening of literature revealed that methylation of cytosines at cleavage sites assayed by MSAP was greater than genome‐wide estimates obtained by HPLC, and percentages of methylation at different nucleotide contexts varied within and across species. Concurrent HPLC and MSAP analyses of DNA from 200 individuals of the perennial herb Helleborus foetidus confirmed that methyl‐cytosine was more frequent in CCGG contexts than in the genome as a whole. In this species, global methylation was unrelated to methylation at the inner CG site. We suggest that global HPLC and context‐specific MSAP methylation estimates provide complementary information whose combination can improve our current understanding of methylation‐based epigenetic processes in nonmodel plants.  相似文献   

10.
Abiotic stressors such as drought, salinity, and exposure to heavy metals can induce epigenetic changes in plants. In this study, liquid chromatography (RP-HPLC), methylation amplified fragment length polymorphisms (metAFLP), and methylation-sensitive amplification polymorphisms (MSAP) analysis was used to investigate the effects of aluminum (Al) stress on DNA methylation levels in the crop species triticale. RP-HPLC, but not metAFLP or MSAP, revealed significant differences in methylation between Al-tolerant (T) and non-tolerant (NT) triticale lines. The direction of methylation change was dependent on phenotype and organ. Al treatment increased the level of global DNA methylation in roots of T lines by approximately 0.6%, whereas demethylation of approximately 1.0% was observed in NT lines. DNA methylation in leaves was not affected by Al stress. The metAFLP and MSAP approaches identified DNA alterations induced by Al3+ treatment. The metAFLP technique revealed sequence changes in roots of all analyzed triticale lines and few mutations in leaves. MSAP showed that demethylation of CCGG sites reached approximately 3.97% and 3.75% for T and NT lines, respectively, and was more abundant than de novo methylation, which was observed only in two tolerant lines affected by Al stress. Three of the MSAP fragments showed similarity to genes involved in abiotic stress.  相似文献   

11.
应用MSAP方法检测鸡不同组织基因组的甲基化状态   总被引:4,自引:0,他引:4  
Xu Q  Zhang Y  Sun DX  Wang YC  Tang SQ  Zhao M 《遗传》2011,33(6):620-626
以白洛克肉鸡和白来航蛋鸡及其杂交F1代基因组为实验材料,应用甲基敏感扩增片段多态性方法(Methylation sensitive amplified polymorphism,MSAP)检测了鸡肌肉、心脏、肝脏和肾脏4个不同组织基因组在CCGG位点的甲基化状态,分析了不同组织的DNA甲基化水平及组织特异性甲基化模式。研究发现:肌肉组织的甲基化水平约为29.7%,肝脏组织约为27.5%,心脏组织约为27.5%,肾脏组织约为26.1%;在鸡3个不同群体及其中3个不同组织间,基因组甲基化程度差异显著(P<0.05);在检测的4个组织中,CCGG序列的全甲基化位点少于半甲基化位点,与植物的相关研究不一致;分离及鉴定了2个组织特异的甲基化片段。结果表明:鸡不同组织基因组的甲基化状态是不同的,同一组织的甲基化水平在不同的群体是不同的,而不同组织甲基化水平的排序在不同的群体是不一致的。这些结果揭示遗传效应可能影响个体的组织甲基化水平。  相似文献   

12.
Rubus idaeus L. is of great economic value. Some varieties of Rubus idaeus have a unique feature of spontaneous rooting from the stem apex. To determine whether DNA methylation is associated with the spontaneous rooting process, variations in the methylation at stem apex during four root developmental stages were investigated, using the methylation-sensitive amplification polymorphism (MSAP) technique and the bisulfite sequencing analysis (BSA). The results showed that the DNA methylation levels and patterns were significantly different between the four developmental stages. A total of 824 CCGG amplified sites were detected by MSAP. MSAP screening revealed that the level of DNA methylation at stages I to IV was 34.95, 36.04, 36.29, and 37.50%, respectively. The number of methylated sites and their methylation levels tended to decrease at stages III and IV (root differentiation and elongation) compared with those at stage I (stem elongation). After cloning and sequencing of the 16 polymorphic differentially methylated DNA fragments, BLAST search results indicated that they might be involved in differentiation of the lateral root primordium, plant defense, signal transduction, and energy metabolism. Results of the qRT-PCR and BSA analyses confirmed that methylation of some key genes was closely associated with their expression at the different developmental stages. These findings could be useful for future studies on the potential role of DNA methylation in spontaneous rooting from the stem apex, implying its importance in rooting regulation and rapid expansion of raspberry populations.  相似文献   

13.
本文调查研究了野生稻群体内及群体间的DNA甲基化多样性。选取与亚洲栽培稻近缘的两个野生种Oryza nivaraO. rufipogon作为研究对象, 采用改进的MSAP (methylation-sensitive amplification polymorphism)技术对其基因组CCGG位点的甲基化多样性进行了分析。结果表明: 在同一个IRGC(the International Rice Germplasm Center)编号群体内的不同个体间, 基因组甲基化条带高度一致; 而在不同编号群体间, 甲基化条带表现为多态。其中后者又可以分为两类: 条带模式高度一致的Class I和条带模式呈多态性的Class II。将上述两类甲基化片段的编码基因与栽培稻粳稻(O. sativaL. subsp. japonica)和籼稻(O. sativa L. subsp. indica)两个亚种的同源基因进行序列比对发现, 在进化趋势上Class I表现得比较保守, 而Class II较为活跃。DNA甲基化多样性作为标志遗传多样性的一种信息来源, 其在群体分化及物种进化过程中的作用还需要进一步探讨。  相似文献   

14.
Analysis of DNA methylation during the germination of wheat seeds   总被引:1,自引:0,他引:1  
DNA methylation is known to play a crucial role in regulating plant development and organ or tissue differentiation. Here, we focused on the DNA methylation dynamics during the germination of wheat seeds using the adapted AFLP technique so called methylation-sensitive amplified polymorphism (MSAP). The MSAP profiles of genomic DNA in embryo and endosperm tissues of germinating seeds, as well as dry seeds were characterized and notable changes of cytosine methylation were detected. Comparisons of MSAP profiles in different tissues tested showed that the methylation level in dry seeds is the highest. The alteration analysis of cytosine methylation displayed that the number of demethylation events were three times higher than that of de novo methylation, which indicated that the demethylation was predominant in germinating wheat seeds, though the methylation events occurred as well. Sixteen differentially displayed DNA fragments in MSAP profiles were cloned and the sequencing analysis confirmed that nine of them contained CCGG sites. The further BLAST search showed that four of the cloned sequences were located in coding regions. Interestingly, three of the sixteen candidates were homologous to retrotransposons, which indicated that switches between DNA methylation and demethylation occurred in retrotransposon elements along with the germination of wheat seeds.  相似文献   

15.
以湿地松×洪都拉斯加勒比松(Pinus elliottii×P.caribaea var.hondurensis)及亲本为实验材料,采用甲基化敏感扩增多态性技术对其基因组中CCGG位点的甲基化相对水平及遗传变异模式进行了初步分析。结果表明,杂种及亲本CCGG总甲基化相对水平介于77.74%~81.75%,CG甲基化相对水平略低于CNG甲基化水平,CG/CNG甲基化相对水平高于亲本。杂种遗传自亲本的CG与CNG甲基化位点数之比接近1:1,遗传自母本的甲基化位点数与遗传自父本的CCGG甲基化位点数比例为1:1;杂种产生的全新甲基化与完全去甲基化位点数之比接近7:1,初步推测大量甲基化变异促进了杂合体的生长发育。  相似文献   

16.
DNA甲基化是真核生物一种重要的表观修饰形式。为了探讨谷子基因组DNA胞嘧啶甲基化的水平和模式,以谷子Setaria italica的两个品种朝谷58号和豫谷1号为实验材料,利用Eco RⅠ和HpaⅡ/MspⅠ双酶切建立适合于谷子基因组的甲基化敏感扩增多态性(MSAP)分析体系。结果表明,从100对MSAP选扩引物中,筛选出32对MSAP引物组合,在朝谷58号和豫谷1号中分别扩增产生1 615、1 482条清晰可辨且可重复的DNA条带,其中包括3种类型的甲基化条带,朝谷58号和豫谷1号的基因组中CCGG序列胞嘧啶甲基化水平分别为6.93%和8.77%。这种谷子不同品种间甲基化水平和分布位点的差异为从表观遗传学的角度培育新品种提供了初步的理论依据和参考。  相似文献   

17.
Guo WL  Wu R  Zhang YF  Liu XM  Wang HY  Gong L  Zhang ZH  Liu B 《Plant cell reports》2007,26(8):1297-1307
We have reported recently that tissue culture induced a high level of genetic variation at the primary nucleotide sequence in regenerants of medicinal plant Codonopsis lanceolata. It is not known, however, whether epigenetic variation in the form of alteration in DNA methylation also occurred in these plants. Here, we investigated possible alterations in level and pattern of cytosine methylation at the CCGG sites in the same set of regenerants relative to the donor plant, by the MSAP method employing a pair of isoschizomers, HpaII and MspI, which recognize the same restriction site but are differentially sensitive to cytosine methylation at the CCGG sites. A total of 1,674 MSAP profiles were resolved using 39 primer combinations. Of these, 177 (10.5%) profiles were polymorphic among the regenerants and/or between the regenerant(s) and the donor plant, in EcoRI + HpaII or EcoRI + MspI digest but not in both, indicating alteration in cytosine methylation patterns of specific loci, though their estimated total level of methylation remained more or less the same as the donor plant. Gel blot analysis validated most of the variant MSAP profiles as bona fide alteration in methylation patterns. Correlation analysis between the MSAP data and the previously reported ISSR and RAPD data revealed significant correlations, suggesting their possible intrinsic interrelatedness. Thirty-seven typical variant MSAP profiles were isolated and sequenced, of which 5 showed significant homology to known-function genes, 2 to chloroplast sequences, whilst the rest 30 did not find a match in the database. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. W. L. Guo and R. Wu contributed equally to this work.  相似文献   

18.
The methylation-sensitive amplified polymorphism (MSAP) technique using HpaII and MspI isoschizomers was used to analyse DNA-methylation alterations in stressed grapevine plants. The stress used was in vitro propagation via nodal segments and in vitro thermotherapy for virus elimination. A set of pertinent grapevine plants derived from two cultivars (18 plants each for Müller Thurgau and Riesling) was used as stressed variants for analyses. A total of 695 and 700 MSAP bands were recognised and evaluated as present/absent for all analysed variants derived from both cvs. Müller Thurgau and Riesling. Average computed similarity of MSAP banding between analysed variants (Dice/Nei and Li coefficient) was 0.935 for both cultivars. Clustering of variants within resulting dendrograms showed significant differences between woody cuttings despite originating from the one plant. Further, there was a strong ‘donor’ effect of maternal plants on future arrays of DNA methylation in their regenerants. The ‘donor’ effect even seemed to prevail in the effect of stress on final DNA-methylation state in stressed regenerants. Additional MSAP evaluation suggests that thermotherapy induced an additional array of methylation changes when compared with stress caused by in vitro cultivation. From the viewpoint of whether methylation of CCGG loci increased/decreased due to stress, the results showed moderate prevalence for decreasing CCGG loci methylation.  相似文献   

19.
Analysis of DNA methylation in different maize tissues   总被引:2,自引:0,他引:2  
DNA methylation plays an important role in gene expression regulation during biological development and tissue differentiation in plants. This study adopted methylation-sensitive Amplified fragment length polymorphism (AFLP) to compare the levels of DNA cytosine methylation at CCGG sites in tassel, bracteal leaf, and ear leaf from maize inbred lines, 18 White and 18 Red, respectively, and also examined specific methylation patterns of the three tissues. Significant differences in cytosine methylation level among the three tissues and the same changing tendency in two inbred lines were detected. Both MSAP (methylation sensitive amplification polymorphism) ratio and full methylation level were the highest in bracteal leaf, and the lowest in tassel. Meanwhile, different methylation levels were observed in the same tissue from the inbred lines, 18 White and 18 Red. Full methylation of internal cytosine was the dominant type in the maize genome. The differential methylation patterns in the three tissues were observed. In addition, sequencing of nine differentially methylated fragments and the subsequent blast search revealed that the cytosine methylated 5 ' -CCGG-3 ' sequences were distributed in repeating sequences, in the coding and noncoding regions. Southern hybridization was used to verify the methylation polymorphism. These results clearly demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and the complexity of DNA methylation change during plant growth and development. The different methylation levels may be related to specific gene expression in various tissues.  相似文献   

20.
During the normal developmental process, programmed gene expression is an essential phenomenon in all organisms. In eukaryotes, DNA methylation plays an important role in the regulation of gene expression. The extent of cytosine methylation polymorphism was evaluated in leaf tissues collected from the greenhouse grown plants and in in vitro-derived callus of three lowbush and one hybrid blueberry genotypes, using methylation-sensitive amplification polymorphism (MSAP) technique. Callus formation started from the leaf segments after 4 weeks of culture on a thidiazuron (TDZ) containing medium. Maximum callus formation (98 %) was observed in the hybrid blueberry at 1.0 mg dm-3 TDZ. Although noticeable changes in cytosine methylation pattern were detected within the MSAP profiles of both leaf and callus tissues, methylation events were more polymorphic in calli than in leaf tissues. The number of methylated CCGG sites varied significantly within the genotypes ranging from 75 to 100 in leaf tissues and from 215 to 258 in callus tissues. Differences in the methylation pattern were observed not only in a tissue-specific manner but also within the genotype in a treatment specific manner. These results demonstrated the unique effect of TDZ and the tissue culture process on DNA methylation during callus development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号