首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the synthesis, biological function, and a plausible mode of action of a new group of lipopeptides with potent antifungal and antibacterial activities. These lipopeptides are derived from positively charged peptides containing d- and l-amino acids (diastereomers) that are palmitoylated (PA) at their N terminus. The peptides investigated have the sequence K(4)X(7)W, where X designates Gly, Ala, Val, or Leu (designated d-X peptides). The data revealed that PA-d-G and PA-d-A gained potent antibacterial and antifungal activity despite the fact that both parental peptides were completely devoid of any activity toward microorganisms and model phospholipid membranes. In contrast, PA-d-L lost the potent antibacterial activity of the parental peptide but gained and preserved partial antifungal activity. Interestingly, both d-V and its palmitoylated analog were inactive toward bacteria, and only the palmitoylated peptide was highly potent toward yeast. Both PA-d-L and PA-d-V lipopeptides were also endowed with hemolytic activity. Mode of action studies were performed by using tryptophan fluorescence and attenuated total reflectance Fourier transform infrared and circular dichroism spectroscopy as well as transmembrane depolarization assays with bacteria and fungi. The data suggest that the lipopeptides act by increasing the permeability of the cell membrane and that differences in their potency and target specificity are the result of differences in their oligomeric state and ability to dissociate and insert into the cytoplasmic membrane. These results provide insight regarding a new approach of modulating hydrophobicity and the self-assembly of non-membrane interacting peptides in order to endow them with both antibacterial and antifungal activities urgently needed to combat bacterial and fungal infections.  相似文献   

2.
Short cationic lipopeptides are amphiphilic molecules that exhibit antimicrobial activity mainly against Gram-positives. These compounds bind to bacterial membranes and disrupt their integrity. Here we examine the structure-activity relation (SAR) of lysine-based lipopeptides, with a prospect to rationally design more active compounds. The presented study aims to explain how antimicrobial activity of lipopeptides is affected by the charge of lipopeptide headgroup and the length of lipopeptide acyl chain. The obtained SAR models suggest that the lipophilicity of short synthetic cationic lipopeptides is the major factor that determines their antimicrobial activities. In order to link the differences in antimicrobial activity to the mechanism of action of lipopeptides containing one and two hydrophobic chains, we additionally performed molecular dynamic (MD) simulations. By using combined coarse-grained and all-atom simulations we also show that these compounds neither affect the organization of the membrane lipids nor aggregate to form separate phases. These results, along with the onset of antimicrobial activity of lipopeptides well below the critical micelle concentration (CMC), indicate that lipopeptides do not act in a simple detergent-like manner.  相似文献   

3.
Taking a minimalistic approach in efforts to lower the cost for the development of new synthetic antimicrobial peptides, ultrashort cationic lipopeptides were designed to mimic the amphiphilic nature crucial for their activity but with only a very short peptide sequence ligated to a lipidic acid. Nine ultrashort cationic lipopeptides were prepared to study the effects of ring constraint in the amino acid side chain of the peptide component. USCL-PCat1, consisting of only four l-4R-aminoproline residues and acylated with palmitic acid at the N-terminus, was found to populate a polyproline II helical secondary conformation that is stable to different pHs and temperatures using circular dichroism. The synthesized lipopeptides were found to have a micellar structure in water using negative staining transmission electron microscopy. We found that constraining the side chain of the amino acid component is not beneficial to the antimicrobial activity. USCL-Dab1, USCL-Dab3 and USCL-K1 showed promising activity against a panel of laboratory reference and clinically isolated Gram-positive and Gram-negative bacterial strains, some of which are multidrug resistant. No appreciable cytotoxicity against human monocytic THP-1 cells was observed up to concentrations of 20–40 µM for all synthesized compounds. Moreover, all USCLs did not induce the production of either pro-inflammatory cytokines or chemokines up to 40 µM.  相似文献   

4.
Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and cause extended environmental pollution. Moreover, an increasing number of phytopathogens develop resistance to them. Recently, we have reported on a new family of ultrashort antimicrobial lipopeptides which are composed of only four amino acids linked to fatty acids (A. Makovitzki, D. Avrahami, and Y. Shai, Proc. Natl. Acad. Sci. USA 103:15997-16002, 2006). Here, we investigated the activities in vitro and in planta and the modes of action of these short lipopeptides against plant-pathogenic bacteria and fungi. They act rapidly, at low micromolar concentrations, on the membranes of the microorganisms via a lytic mechanism. In vitro microscopic analysis revealed wide-scale damage to the microorganism's membrane, in addition to inhibition of pathogen growth. In planta potent antifungal activity was demonstrated on cucumber fruits and leaves infected with the pathogen Botrytis cinerea as well as on corn leaves infected with Cochliobolus heterostrophus. Similarly, treatment with the lipopeptides of Arabidopsis leaves infected with the bacterial leaf pathogen Pseudomonas syringae efficiently and rapidly reduced the number of bacteria. Importantly, in contrast to what occurred with many native lipopeptides, no toxicity was observed on the plant tissues. These data suggest that the ultrashort lipopeptides could serve as native-like antimicrobial agents economically feasible for use in plant protection.  相似文献   

5.
Avrahami D  Shai Y 《Biochemistry》2003,42(50):14946-14956
The dramatically increased frequency of opportunistic fungal infections has prompted research to diversify the arsenal of antifungal agents. Antimicrobial peptides constitute a promising family for future antibiotics with a new mode of action. However, only a few are effective against fungal pathogens because of their ability to self-assemble. Recently, we showed that the conjugation of fatty acids to the potent antibacterial peptide magainin endowed it with antifungal activity concomitant with an increase in its oligomeric state in solution. To investigate whether a high potency of the parental peptide is prerequisite for antifungal activity, we conjugated undecanoic acid (UA) and palmitic acid (PA) to inactive diastereomers of magainin containing four d-amino acids ([D]-4-magainin), as well as to a weakly active diastereomeric lytic peptide containing Lys and Leu ([D]-K(5)L(7)). All lipopeptides gained potent activity toward Cryptococcus neoformans. Most importantly, [D]-K(5)L(7)-UA was highly potent against all microorganisms tested, including bacteria, yeast, and opportunistic fungi. All lipopeptides increased the permeability of Escherichia coli spheroplasts and intact C. neoformans, as well as their corresponding membranes, phosphatidylethanol (PE)/phosphatidylglycerol (PG) and phosphatidylcholine (PC)/PE/phosphatidylinositol (PI)/ergosterol, respectively. The extent of membrane-permeating activity correlated with their biological function, suggesting that the plasma membrane was one of their major targets. Circular dichroism (CD) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy revealed that their mode of oligomerization in solution, structure, and organization in membranes have important roles regarding their antibacterial and antifungal activities. Together with the advantage of using diastereomers versus all l-amino acid peptides, this study paves the way to the design of a new group of potent antifungal peptides urgently needed to combat opportunistic fungal infection.  相似文献   

6.
Cationic antimicrobial peptides exhibit potent antimicrobial activity against clinically relevant microorganisms including Propionibacterium acnes. Recent studies showed that, in addition to the antimicrobial activity, these peptides can exhibit an anti-inflammatory effect. These properties make cationic peptides attractive drug candidates for the treatment of acne vulgaris, a disease with both bacterial and inflammatory components. This review focuses on the anti-inflammatory activity of cationic antimicrobial peptides and its application for the treatment of acne vulgaris. The anti-inflammatory activity of cationic peptides in acne vulgaris can be explained by their ability to both bind proinflammatory bacterial factors (e.g. lipoteichoic acid), sequestering them from the site of inflammation, and to inhibit the secretion of proinflammatory cytokines (e.g. tumor necrosis factor-alpha, IL-1) by host cells. These anti-inflammatory effects combined with potent antimicrobial activity may translate into a novel therapeutic option for acne vulgaris.  相似文献   

7.
Avrahami D  Shai Y 《Biochemistry》2002,41(7):2254-2263
Our basic understanding of how to combat fungal infections has not kept pace with the recent sharp rise in life-threatening cases found particularly among immuno-compromised individuals. Current investigations for new potential antifungal agents have focused on antimicrobial peptides, which are used as a cell-free defense mechanism in all organisms. Unfortunately, despite their high antibacterial activity, most of them are not active toward fungi, the reason of which is not clear. Here, we present a new approach to modify an antibacterial peptide, a magainin analogue, to display antifungal activity by its conjugation with lipophilic acids. This approach has the advantage of producing well-defined changes in hydrophobicity, secondary structure, and self-association. These modifications were characterized in solution at physiological concentrations using CD spectroscopy, tryptophan fluorescence, and analytical ultracentrifugation. In order of increasing hydrophobicity, the attachment to the magainin-2 analogue of (i) heptanoic acid results in a monomeric, unordered structure, (ii) undecanoic acid yields concentration-dependent oligomers of alpha helices, and (iii) palmitic acid yields concentration-independent alpha-helical monomers, a novel lipopeptide structure, which is resistant to proteolytic digestion. Membrane-lipopeptide interactions and the membrane-bound structures were studied using fluorescence and ATR-FTIR in PC/PE/PI/ergosterol (5/2.5/2.5/1, w/w) SUV, which constitute the major components of Candida albicans bilayers. A direct correlation was found between oligomerization of the lipopeptides in solution and potent antifungal activity. These results provide insight to a new approach of modulating hydrophobicity and self-assembly of antimicrobial peptides in solution, without altering the sequence of the peptidic chain. These studies also provide a general means of developing a new group of lipopeptide candidates as therapeutic agents against fungal infections.  相似文献   

8.
Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and cause extended environmental pollution. Moreover, an increasing number of phytopathogens develop resistance to them. Recently, we have reported on a new family of ultrashort antimicrobial lipopeptides which are composed of only four amino acids linked to fatty acids (A. Makovitzki, D. Avrahami, and Y. Shai, Proc. Natl. Acad. Sci. USA 103:15997-16002, 2006). Here, we investigated the activities in vitro and in planta and the modes of action of these short lipopeptides against plant-pathogenic bacteria and fungi. They act rapidly, at low micromolar concentrations, on the membranes of the microorganisms via a lytic mechanism. In vitro microscopic analysis revealed wide-scale damage to the microorganism's membrane, in addition to inhibition of pathogen growth. In planta potent antifungal activity was demonstrated on cucumber fruits and leaves infected with the pathogen Botrytis cinerea as well as on corn leaves infected with Cochliobolus heterostrophus. Similarly, treatment with the lipopeptides of Arabidopsis leaves infected with the bacterial leaf pathogen Pseudomonas syringae efficiently and rapidly reduced the number of bacteria. Importantly, in contrast to what occurred with many native lipopeptides, no toxicity was observed on the plant tissues. These data suggest that the ultrashort lipopeptides could serve as native-like antimicrobial agents economically feasible for use in plant protection.  相似文献   

9.
The spread of drug-resistant bacteria has imparted a sense of urgency in the search for new antibiotics. In an effort to develop a new generation of antibacterial agents, we have designed de novo charged lipopeptides inspired by natural antimicrobial peptides. These short lipopeptides are composed of cationic lysine and hydrophobic lipoamino acids that replicate the amphiphilic properties of natural antimicrobial peptides. The resultant lipopeptides were found to self-assemble into nanoparticles. Some were effective against a variety of Gram-positive bacteria, including strains resistant to methicillin, daptomycin and/or vancomycin. The lipopeptides were not toxic to human kidney and liver cell lines and were highly resistant to tryptic degradation. Transmission electron microscopy analysis of bacteria cells treated with lipopeptide showed membrane-damage and lysis with extrusion of cytosolic contents. With such properties in mind, these lipopeptides have the potential to be developed as new antibacterial agents against drug-resistant Gram-positive bacteria.  相似文献   

10.
Diversity of antimicrobial peptides and their mechanisms of action   总被引:31,自引:0,他引:31  
Antimicrobial peptides encompass a wide variety of structural motifs. Many peptides have alpha-helical structures. The majority of these peptides are cationic and amphipathic but there are also hydrophobic alpha-helical peptides which possess antimicrobial activity. In addition, some beta-sheet peptides have antimicrobial activity and even antimicrobial alpha-helical peptides which have been modified to possess a beta-structure retain part of their antimicrobial activity. There are also antimicrobial peptides which are rich in a certain specific amino acid such as Trp or His. In addition, antimicrobial peptides exist with thio-ether rings, which are lipopeptides or which have macrocyclic Cys knots. In spite of the structural diversity, a common feature of the cationic antimicrobial peptides is that they all have an amphipathic structure which allows them to bind to the membrane interface. Indeed, most antimicrobial peptides interact with membranes and may be cytotoxic as a result of disturbance of the bacterial inner or outer membranes. Alternatively, a necessary but not sufficient property of these peptides may be to be able to pass through the membrane to reach a target inside the cell. The interaction of these peptides with biological membranes is not just a function of the peptide but is also modulated by the lipid components of the membrane. It is not likely that this diverse group of peptides has a single mechanism of action, but interaction of the peptides with membranes is an important requirement for most, if not all, antimicrobial peptides.  相似文献   

11.
Cyclic lipopeptides (CLPs) are versatile molecules produced by a variety of bacterial genera, including plant-associated Pseudomonas spp. CLPs are composed of a fatty acid tail linked to a short oligopeptide, which is cyclized to form a lactone ring between two amino acids in the peptide chain. CLPs are very diverse both structurally and in terms of their biological activity. The structural diversity is due to differences in the length and composition of the fatty acid tail and to variations in the number, type, and configuration of the amino acids in the peptide moiety. CLPs have received considerable attention for their antimicrobial, cytotoxic, and surfactant properties. For plant-pathogenic Pseudomonas spp., CLPs constitute important virulence factors, and pore formation, followed by cell lysis, is their main mode of action. For the antagonistic Pseudomonas sp., CLPs play a key role in antimicrobial activity, motility, and biofilm formation. CLPs are produced via nonribosomal synthesis on large, multifunctional peptide synthetases. Both the structural organization of the CLP synthetic templates and the presence of specific domains and signature sequences within peptide synthetase genes will be described for both pathogenic and antagonistic Pseudomonas spp. Finally, the role of various genes and regulatory mechanisms in CLP production by Pseudomonas spp., including two-component regulation and quorum sensing, will be discussed in detail.  相似文献   

12.
With the steady rise in the number of antibiotic-resistant Gram-positive pathogens, it has become increasingly important to find new antibacterial agents which are highly active and have novel and diversified mechanisms of action. Two classes will be discussed here: the cationic antimicrobial peptides, which are amphiphilic in nature, targeting membranes and increasing their permeability; and lipopeptides, which consist of linear or cyclic peptides with an N-terminus that is acylated with a fatty acid side chain. One member of the cyclic lipopeptide family, the anionic molecule daptomycin, has been extensively studied and is the major focus of this review. Models will be presented on its mode of action and comparisons will be made to the known modes of action of cationic antimicrobial peptides and other lipopeptides.  相似文献   

13.
With the steady rise in the number of antibiotic-resistant Gram-positive pathogens, it has become increasingly important to find new antibacterial agents which are highly active and have novel and diversified mechanisms of action. Two classes will be discussed here: the cationic antimicrobial peptides, which are amphiphilic in nature, targeting membranes and increasing their permeability; and lipopeptides, which consist of linear or cyclic peptides with an N-terminus that is acylated with a fatty acid side chain. One member of the cyclic lipopeptide family, the anionic molecule daptomycin, has been extensively studied and is the major focus of this review. Models will be presented on its mode of action and comparisons will be made to the known modes of action of cationic antimicrobial peptides and other lipopeptides.  相似文献   

14.
Rosenfeld Y  Sahl HG  Shai Y 《Biochemistry》2008,47(24):6468-6478
Endotoxin [lipopolysaccharide (LPS)] covers more than 90% of the outer monolayer of the outer membrane of Gram-negative bacteria, and it plays a dual role in its pathogenesis: as a protective barrier against antibiotics and as an effector molecule, which is recognized by and activates the innate immune system. The ability of host-defense antimicrobial peptides to bind LPS on intact bacteria and in suspension has been implicated in their antimicrobial and LPS detoxification activities. However, the mechanisms involved and the properties of the peptides that enable them to traverse the LPS barrier or to neutralize LPS endotoxic activity are not yet fully understood. Here we investigated a series of antimicrobial peptides and their analogues with drastically altered sequences and structures, all of which share the same amino acid composition (K 6L 9). The list includes both all- l-amino acid peptides and their diastereomers (composed of both l- and d-amino acids). The peptides were investigated functionally for their antibacterial activity and their ability to block LPS-dependent TNF-alpha secretion by macrophages. Fluorescence spectroscopy and transmission electron microscopy were used to detect their ability to bind LPS and to affect its oligomeric state. Their secondary structure was characterized in solution, in LPS suspension, and in LPS multibilayers by using CD and FTIR spectroscopy. Our data reveal specific biophysical properties of the peptides that are required to kill bacteria and/or to detoxify LPS. Besides shedding light on the mechanisms of these two important functions, the information gathered should assist in the development of AMPs with potent antimicrobial and LPS detoxification activities.  相似文献   

15.
The effect of introducing fluorine atoms or trifluoromethyl groups in either the peptidic chain or the C-terminal end of cationic pentapeptides is reported. Three series of amide and ester peptides were synthesised and their antimicrobial properties evaluated. An enhanced activity was found in those derivatives whose structure contained fluorine, suggesting an increase in their hydrophobicity.  相似文献   

16.
Antilipopolysaccharide factors (ALFs) have been described as highly cationic polypeptides with a broad spectrum of potent antimicrobial activities. In addition, ALFs have been shown to recognize LPS, a major component of the Gram-negative bacteria cell wall, through conserved amino acid residues exposed in the four-stranded β-sheet of their three dimensional structure. In penaeid shrimp, ALFs form a diverse family of antimicrobial peptides composed by three main variants, classified as ALF Groups A to C. Here, we identified a novel group of ALFs in shrimp (Group D ALFs), which corresponds to anionic polypeptides in which many residues of the LPS binding site are lacking. Both Group B (cationic) and Group D (anionic) shrimp ALFs were produced in a heterologous expression system. Group D ALFs were found to have impaired LPS-binding activities and only limited antimicrobial activity compared to Group B ALFs. Interestingly, all four ALF groups were shown to be simultaneously expressed in an individual shrimp and to follow different patterns of gene expression in response to a microbial infection. Group B was by far the more expressed of the ALF genes. From our results, nucleotide sequence variations in shrimp ALFs result in functional divergence, with significant differences in LPS-binding and antimicrobial activities. To our knowledge, this is the first functional characterization of the sequence diversity found in the ALF family.  相似文献   

17.
【目的】为发掘和利用蜂粮中拮抗菌资源,对分离获得的拮抗细菌菌株PC2进行分类鉴定,并测定其发酵液抑菌物质基本特性。【方法】采用改良牛津杯双层平板法测定菌株发酵液抑菌谱及温度、p H、紫外线和蛋白酶对其抑菌活性稳定性的影响,菌株鉴定结合形态学、生理生化特征和16S r RNA基因序列分析,硫酸铵沉淀法和盐酸沉淀有机溶剂提取法进行抑菌活性物质的初步分离。【结果】从3种蜂粮中分离筛选得到17株拮抗菌株,其中1株细菌PC2以马铃薯葡萄糖液体培养基发酵制备的无菌发酵液对7种供试菌株具有较强抑制作用,经形态、生理生化特征及16S r RNA基因序列分析,将其初步鉴定为解淀粉芽胞杆菌(Bacillus amyloliquefaciens)。菌株发酵液抑菌活性对温度、酸和紫外线具有较强的稳定性,对蛋白酶K、胃蛋白酶、碱性蛋白酶处理敏感。菌株发酵液存在抑菌蛋白和脂肽类物质。【结论】菌株PC2在食品保鲜和农业生防中具有潜在的开发应用价值。  相似文献   

18.
Short cationic antimicrobial lipopeptides with surfactant-like structure are promising antibiotic candidates that preferentially target microbial membranes. Therefore, we focused our study on double-chain lipopeptides, (C10-16)2Dab-KKK-NH2 and (C10-16)2Dap-KKK-NH2, where Dab and Dap are 2,4-diaminobutyric and 2,3-diaminopropionic acids, respectively. We tried to answer a question how the self-assembly behaviour affects biological activities of the tested compounds. The subject compounds were synthesized by solid-phase method and screened for their antimicrobial and haemolytic activities. Cytotoxicity tests on human keratinocytes were carried out for the most promising lipopeptides. Self-assembly properties were evaluated by both experimental and theoretical methods. Interactions with membrane models were examined using the ITC and FTIR techniques. All the lipopeptides studied showed the tendency to self-assembly in solution, and this behaviour was affected by the length of the hydrocarbon chains. Acyl chain elongation supported the formation of the bilayer structure and deprived the lipopeptides of antimicrobial activity. A multi-step mechanism of interaction with a negatively charged membrane was observed for the short-chain lipopeptides, indicating other processes accompanying the binding process. Short-chain lipopeptides were able to penetrate into the liposome’s interior and/or cause the rupture of the liposome, this being compatible with their high antimicrobial activity.  相似文献   

19.
The increasing bacterial resistance against conventional antibiotics has led to the search for new antimicrobial drugs with different modes of action. Cationic antimicrobial peptides (AMPs) and lipopeptides are promising candidates to treat infections because they act on bacterial membranes causing rapid destruction of sensitive bacteria. In this study, a decapeptide named A2 (IKQVKKLFKK) was conjugated at the N‐terminus with saturated, unsaturated, methoxylated and methyl ‐branched fatty acids of different chain lengths (C8 – C20), the antimicrobial and structural properties of the lipopeptides being then investigated. The attachment of the fatty acid chain significantly improved the antimicrobial activity of A2 against bacteria, and so, endowed it with moderated antifungal activity against yeast strains belonging to genus Candida. Lipopeptides containing hydrocarbon chain lengths between C8 and C14 were the best antibacterial compounds (MIC = 0.7 to 5.8 μM), while the most active compounds against yeast were A2 conjugated with methoxylated and enoic fatty acids (11.1 to 83.3 μM). The improvement in antimicrobial activity was mainly related to the amphipathic secondary structure adopted by A2 lipopeptides in the presence of vesicles that mimic bacterial membranes. Peptide conjugation with long hydrocarbon chains (C12 or more), regardless of their structure, significantly increased toxicity towards eukaryotic cells, resulting in a loss of selectivity. These findings suggest that A2‐derived lipopeptides are potential good candidates for the treatment of infectious diseases caused by bacteria and opportunistic pathogenic yeast belonging to genus Candida. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号