首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deamination of DNA bases can occur spontaneously, generating highly mutagenic lesions such as uracil, hypoxanthine, and xanthine. When cells are under oxidative stress that is induced either by oxidizing agents or by mitochondrial dysfunction, additional deamination products such as 5-hydroxymethyluracil (5-HMU) and 5-hydroxyuracil (5-OH-Ura) are formed. The cellular level of these highly mutagenic lesions is increased substantially when cells are exposed to DNA damaging agent, such as ionizing radiation, redox reagents, nitric oxide, and others. The cellular repair of deamination products is predominantly through the base excision repair (BER) pathway, a major cellular repair pathway that is initiated by lesion specific DNA glycosylases. In BER, the lesions are removed by the combined action of a DNA glycosylase and an AP endonuclease, leaving behind a one-base gap. The gapped product is then further repaired by the sequential action of DNA polymerase and DNA ligase. DNA glycosylases that recognize uracil, 5-OH-Ura, 5-HMU (derived from 5-methylcytosine) and a T/G mismatch (derived from a 5-methylcytosine/G pair) are present in most cells. Many of these glycosylases have been cloned and well characterized. In yeast and mammalian cells, hypoxanthine is efficiently removed by methylpurine N-glycosylase, and it is thought that BER might be an important pathway for the repair of hypoxanthine. In contrast, no glycosylase that can recognize xanthine has been identified in either yeast or mammalian cells. In Escherichia coli, the major enzyme activity that initiates the repair of hypoxanthine and xanthine is endonuclease V. Endonuclease V is an endonuclease that hydrolyzes the second phosphodiester bond 3' to the lesion. It is hypothesized that the cleaved DNA is further repaired through an alternative excision repair (AER) pathway that requires the participation of either a 5' endonuclease or a 3'-5' exonuclease to remove the damaged base. The repair process is then completed by the sequential actions of DNA polymerase and DNA ligase. Endonuclease V sequence homologs are present in all kingdoms, and it is conceivable that endonuclease V might also be a major enzyme that initiates the repair of hypoxanthine and xanthine in mammalian cells.  相似文献   

2.
Mammalian mitochondria contain several 16.5 kb circular DNAs (mtDNA) encoding electron transport chain proteins. Reactive oxygen species formed as byproducts from oxidative phosphorylation in these organelles can cause oxidative deamination of cytosine and lead to uracil in mtDNA. Upon mtDNA replication, these lesions, if unrepaired, can lead to mutations. Until recently, it was thought that there was no DNA repair in mitochondria, but lately there is evidence that some lesions are efficiently repaired in these organelles. In the study of nuclear DNA repair, the in vitro repair measurements in cell extracts have provided major insights into the mechanisms. The use of whole-cell extract based DNA repair methods has revealed that mammalian nuclear base excision repair (BER) diverges into two pathways: the single-nucleotide replacement and long patch repair mechanisms. Similar in vitro methods have not been available for the study of mitochondrial BER. We have established an in vitro DNA repair system supported by rat liver mitochondrial protein extract and DNA substrates containing a single uracil opposite to a guanine. Using this approach, we examined the repair pathways and the identity of the DNA polymerase involved in mitochondrial BER (mtBER). Employing restriction analysis of in vitro repaired DNA to map the repair patch size, we demonstrate that only one nucleotide is incorporated during the repair process. Thus, in contrast to BER in the nucleus, mtBER of uracil in DNA is solely accomplished by single-nucleotide replacement.  相似文献   

3.
DNA with abasic sites has been prepared by deamination of cytosine followed by treatment of the product with uracil N-glycosylase. Termination in vitro on such templates does not occur until treatment with uracil N-glycosylase. DNA terminated one base before abasic sites created from C's has been used as a template in "second stage" reactions. With enzymes devoid or deficient in 3' greater than 5' exonuclease activity purines, particularly adenine, are preferentially added opposite the putative abasic site. 2-Aminopurine behaves more like adenine than like guanine in these experiments. Polymerase beta preferentially incorporates A opposite abasic sites produced from T, and G opposite abasic sites produced from C. We have eliminated an obvious artefact (e.g. strand switching) which might account for this observation.  相似文献   

4.
Human thymine DNA glycosylase (TDG) was discovered as an enzyme that can initiate base excision repair at sites of 5-methylcytosine- or cytosine deamination in DNA by its ability to release thymine or uracil from G.T and G.U mismatches. Crystal structure analysis of an Escherichia coli homologue identified conserved amino acid residues that are critical for its substrate recognition/interaction and base hydrolysis functions. Guided by this revelation, we performed a mutational study of structure function relationships with the human TDG. Substitution of the postulated catalytic site asparagine with alanine (N140A) resulted in an enzyme that bound mismatched substrates but was unable to catalyze base removal. Mutation of Met-269 in a motif with a postulated role in protein-substrate interaction selectively inactivated stable binding of the enzyme to mismatched substrates but not so its glycosylase activity. These results establish that the structure function model postulated for the E. coli enzyme is largely applicable to the human TDG. We further provide evidence for G.U being the preferred substrate of TDG, not only at the mismatch recognition step of the reaction but also in base hydrolysis, and for the importance of stable complementary strand interactions by TDG to compensate for its comparably poor hydrolytic potential.  相似文献   

5.
The human protein MED1 (also known as MBD4) was previously isolated in a two-hybrid screening using the mismatch repair protein MLH1 as a bait, and shown to have homology to bacterial base excision repair DNA N-glycosylases/lyases. To define the mechanisms of action of MED1, we implemented a sensitive glycosylase assay amenable to kinetic analysis. We show that MED1 functions as a mismatch-specific DNA N-glycosylase active on thymine, uracil, and 5-fluorouracil when these bases are opposite to guanine. MED1 lacks uracil glycosylase activity on single-strand DNA and abasic site lyase activity. The glycosylase activity of MED1 prefers substrates containing a G:T mismatch within methylated or unmethylated CpG sites; since G:T mismatches can originate via deamination of 5-methylcytosine to thymine, MED1 may act as a caretaker of genomic fidelity at CpG sites. A kinetic analysis revealed that MED1 displays a fast first cleavage reaction followed by slower subsequent reactions, resulting in biphasic time course; this is due to the tight binding of MED1 to the abasic site reaction product rather than a consequence of enzyme inactivation. Comparison of kinetic profiles revealed that the MED1 5-methylcytosine binding domain and methylation of the mismatched CpG site are not required for efficient catalysis.  相似文献   

6.
Cytosine glycols (5,6-dihydroxy-5,6-dihydrocytosine) are initial products of cytosine oxidation. Because these products are not stable, virtually all biological studies have focused on the stable oxidation products of cytosine, including 5-hydroxycytosine, uracil glycols and 5-hydroxyuracil. Previously, we reported that the lifetime of cytosine glycols was greatly enhanced in double-stranded DNA, thus implicating these products in DNA repair and mutagenesis. In the present work, cytosine and uracil glycols were generated in double-stranded alternating co-polymers by oxidation with KMnO4. The half-life of cytosine glycols in poly(dG-dC) was 6.5 h giving a ratio of dehydration to deamination of 5:1. At high substrate concentrations, the excision of cytosine glycols from poly(dG-dC) by purified endonuclease III was comparable to that of uracil glycols, whereas the excision of these substrates was 5-fold greater than that of 5-hydroxycytosine. Kinetic studies revealed that the Vmax was several fold higher for the excision of cytosine glycols compared to 5-hydroxycytosine. In contrast to cytosine glycols, uracil glycols did not undergo detectable dehydration to 5-hydroxyuracil. Replacing poly(dG-dC) for poly(dI-dC) gave similar results with respect to the lifetime and excision of cytosine glycols. This work demonstrates the formation of cytosine glycols in DNA and their removal by base excision repair.  相似文献   

7.
We demonstrate that a mutant of uracil DNA glycosylase (N123D:L191A) distinguishes between cytosine and methylcytosine. Uracil DNA glycosylase (UDG) efficiently removes uracil from DNA in a reaction in which the base is flipped into the enzyme’s active site. Uracil is selected over cytosine by a pattern of specific hydrogen bonds, and thymine is excluded by steric clash of its 5-methyl group with Y66. The N123D mutation generates an enzyme that excises cytosine. This N123D:L191A mutant excises C when it is mispaired with A or opposite an abasic site, but not when it is paired with G. In contrast no cleavage is observed with any substrates that contain 5-methylcytosine. This enzyme may offer a new approach for discriminating between cytosine and 5-methylcytosine.  相似文献   

8.
Mechanism of action of a mammalian DNA repair endonuclease   总被引:17,自引:0,他引:17  
The mechanism of action of a DNA repair endonuclease isolated from calf thymus was determined. The calf thymus endonuclease possesses a substrate specificity nearly identical with that of Escherichia coli endonuclease III following DNA damage by high doses of UV light, osmium tetroxide, and other oxidizing agents. The calf thymus enzyme incises damaged DNA at sites of pyrimidines. A cytosine photoproduct was found to be the primary monobasic UV adduct. The calf thymus endonuclease and E. coli endonuclease III were found to possess similar, but not identical, DNA incision mechanisms. The mechanism of action of the calf thymus endonuclease was deduced by analysis of the 3' and 5' termini of the enzyme-generated DNA scission products with DNA sequencing methodologies and HPLC analysis of the material released by the enzyme following DNA damage. The calf thymus endonuclease removes UV light and osmium tetroxide damaged bases via an N-glycosylase activity followed by a 3' apurinic/apyrimidinic (AP) endonuclease activity. The calf thymus endonuclease also possesses a novel 5' AP endonuclease activity not possessed by endonuclease III. The product of this three-step mechanism is a nucleoside-free site flanked by 3'-and 5'-terminal phosphate groups. These results indicate the conservation of both substrate specificity and mechanism of action in the enzymatic removal of oxidative base damage between prokaryotes and eukaryotes. We propose the name redoxy endonucleases for this group of enzymes.  相似文献   

9.
Seki M  Gearhart PJ  Wood RD 《EMBO reports》2005,6(12):1143-1148
Somatic hypermutation of immunoglobulin variable genes, which increases antibody diversity, is initiated by the activation-induced cytosine deaminase (AID) protein. The current DNA-deamination model posits that AID deaminates cytosine to uracil in DNA, and that mutations are generated by DNA polymerases during replication or repair of the uracil residue. Mutations could arise as follows: by DNA replicating past the uracil; by removing the uracil with a uracil glycosylase and replicating past the resulting abasic site with a low-fidelity polymerase; or by repairing the uracil and synthesizing a DNA-repair patch downstream using a low-fidelity polymerase. In this review, we summarize the biochemical properties of specialized DNA polymerases in mammalian cells and discuss their participation in the mechanisms of hypermutation. Many recent studies have examined mice deficient in the genes that encode various DNA polymerases, and have shown that DNA polymerase H (POLH) contributes to hypermutation, whereas POLI, POLK and several other enzymes do not have major roles. The low-fidelity enzyme POLQ has been proposed as another candidate polymerase because it can efficiently bypass abasic sites and recent evidence indicates that it might participate in hypermutation.  相似文献   

10.
Nascent short DNA chains could result from repair of incorporated uracil residues or be intermediates in discontinuous replication. We have characterized short DNA chains having apyrimidinic/apurinic-sites at 5' ends, the expected intermediates of repair, to distinguish them from RNA-linked replication intermediates. We have synthesized model substrates for the repair products; d(pRib[32P]poly(T)) and d(Rib[32P]poly(T)). Alkaline hydrolysis of both substrates has produced [5'-32P]poly(dT). Nascent short DNA was prepared from an Escherichia coli sof (dut) mutant, in this strain fragments from excision repair of uracil residues accumulate. The products of alkaline treatment are hardly digested by spleen exonuclease which selectively degrades 5'-hydroxyl-terminated DNA. These two results show that alkaline hydrolysis of the uracil repair fragments produces 5'-phosphoryl-terminated DNA, whereas it is known that 5'-hydroxyl-terminated DNA is generated from RNA-linked DNA molecules. The two types of nascent fragments thus can be distinguished by the 5'-terminal structure produced by an alkaline hydrolysis.  相似文献   

11.
Purification from calf thymus of a DNA N-glycosylase activity (HMUDG) that released 5-hydroxymethyluracil (5hmUra) from the DNA of Bacillus subtilis phage SPO1 was undertaken. Analysis of the most purified fraction by SDS-polyacrylamide gel electrophoresis revealed a multiplicity of protein species making it impossible to identify HMUDG by inspection. Therefore, we renatured the enzyme after SDS-polyacrylamide gel electrophoresis and assayed slices of the gel for DNA N-glycosylase activity directed against 5hmUra. Maximum enzymatic activity was identified between molecular mass markers 30 and 34 kDa. Protein was extracted from gel slices and subjected to tryptic digestion and analysis by mass spectrometry. Analysis revealed the presence of 11 peptides that were homologous or identical to the sequence of the recently characterized human single-stranded monofunctional uracil DNA N-glycosylase (hSMUG1). The cDNA of hSMUG1 was isolated and expressed as a recombinant glutathione S-transferase fusion protein that was shown to release 5hmUra with 20x the specific activity of the most purified bovine fraction. We conclude that hSMUG1 and HMUDG are the same protein.  相似文献   

12.
Endonuclease V (deoxyinosine 3'-endonuclease) of Escherichia coli K-12 is a putative DNA repair enzyme that cleaves DNA's containing hypoxanthine, uracil, or mismatched bases. An endonuclease V (nfi) mutation was tested for specific mutator effects on a battery of trp and lac mutant alleles. No marked differences were seen in frequencies of spontaneous reversion. However, when nfi mutants were treated with nitrous acid at a level that was not noticeably mutagenic for nfi(+) strains, they displayed a high frequency of A:T-->G:C, and G:C-->A:T transition mutations. Nitrous acid can deaminate guanine in DNA to xanthine, cytosine to uracil, and adenine to hypoxanthine. The nitrous acid-induced A:T-->G:C transitions were consistent with a role for endonuclease V in the repair of deaminated adenine residues. A confirmatory finding was that the mutagenesis was depressed at a locus containing N(6)-methyladenine, which is known to be relatively resistant to nitrosative deamination. An alkA mutation did not significantly enhance the frequency of A:T-->G:C mutations in an nfi mutant, even though AlkA (3-methyladenine-DNA glycosylase II) has hypoxanthine-DNA glycosylase activity. The nfi mutants also displayed high frequencies of nitrous acid-induced G:C-->A:T transitions. These mutations could not be explained by cytosine deamination because an ung (uracil-DNA N-glycosylase) mutant was not similarly affected. However, these findings are consistent with a role for endonuclease V in the removal of deaminated guanine, i.e., xanthine, from DNA. The results suggest that endonuclease V helps to protect the cell against the mutagenic effects of nitrosative deamination.  相似文献   

13.
A uracil specific DNA N-glycosidase activity has been partially purified from crude extracts of Bacillus subtilis. The enzyme has a molecular weight of approximately 24 000 with no subunit structure. It has no requirement for any known cofactors but is inhibited in the presence of Co2+, Fe2+, or Zn2+. The enzyme is specific for uracil in single- and double-stranded deoxyribonucleopolymers and does not release free uracil from RNA or from poly(rU):poly(dA). In addition, neither Udr, dUMP, nor dUTP is recognized as substrate. The enzyme will attack small poly(dU) oligomers but the minimum size recognized as substrate is (pU)4. This enzyme may have a role in the repair (by base excision) or uracil in DNA arising either by incorporation during DNA synthesis or by deamination of cytosine in DNA.  相似文献   

14.
H H el-Hajj  L Wang    B Weiss 《Journal of bacteriology》1992,174(13):4450-4456
The dut gene of Escherichia coli encodes deoxyuridine triphosphatase, an enzyme that prevents the incorporation of dUTP into DNA and that is needed in the de novo biosynthesis of thymidylate. We produced a conditionally lethal dut(Ts) mutation and isolated a phenotypic revertant that had a mutation in an unknown gene tentatively designated dus (for dut suppressor). The dus mutation restored the ability of the dut mutant to grow at 42 degrees C without restoring its enzymatic activity or thymidylate independence. A strain was constructed bearing, in addition to these mutations, ones affecting the following genes and their corresponding products: ung, which produces uracil-DNA N-glycosylase, a repair enzyme that removes uracil from DNA; deoA, which produces thymidine (deoxyuridine) phosphorylase, which would degrade exogenous deoxyuridine; and thyA, which produces thymidylate synthase. When grown at 42 degrees C in minimal medium containing deoxyuridine, the multiple mutant displayed a 93 to 96% substitution of uracil for thymine in new DNA. Growth stopped after the cellular DNA had increased 1.6- to 1.9-fold and the cell mass had increased 1.7- to 2.7-fold, suggesting a general failure of macromolecular biosynthesis. DNA hybridization confirmed that the uracil-containing DNA was chromosomal and that new rounds of initiation must have occurred during its synthesis.  相似文献   

15.
Cells harvested from Fanconi anemia (FA) patients show an increased hypersensitivity to the multifunctional DNA damaging agent mitomycin C (MMC), which causes cross-links in DNA as well as 7,8-dihydro-8-oxoguanine (8-oxoG) adducts indicative of escalated oxidative DNA damage. We show here that the Drosophila multifunctional S3 cDNA, which encodes an N-glycosylase/apurinic/apyrimidinic (AP) lyase activity was found to correct the FA Group A (FA(A)) and FA Group C (FA(C)) sensitivity to MMC and hydrogen peroxide (H2O2). Furthermore, the Drosophila S3 cDNA was shown to protect AP endonuclease deficient E. coli cells against H(2)O(2) and MMC, and also protect 8-oxoG repair deficient mutM E. coli strains against MMC and H2O2 cell toxicity. Conversely, the human S3 protein failed to complement the AP endonuclease deficient E. coli strain, most likely because it lacks N-glycosylase activity for the repair of oxidatively-damaged DNA bases. Although the human S3 gene is clearly not the genetic alteration in FA cells, our results suggest that oxidative DNA damage is intimately involved in the overall FA phenotype, and the cytotoxic effect of selective DNA damaging agents in FA cells can be overcome by trans-complementation with specific DNA repair cDNAs. Based on these findings, we would predict other oxidative repair proteins, or oxidative scavengers, could serve as protective agents against the oxidative DNA damage that occurs in FA.  相似文献   

16.
Human cytomegalovirus (CMV) encodes a gene, UL114, whose product is homologous to the uracil DNA glycosylase and is highly conserved in all herpesviruses. This DNA repair enzyme excises uracil residues in DNA that result from the misincorporation of dUTP or spontaneous deamination of cytosine. We constructed a recombinant virus, RC2620, that contains a large deletion in the UL114 open reading frame and carries a 1.2-kb insert containing the Escherichia coli gpt gene. RC2620 retains the capacity to replicate in primary human fibroblasts and reaches titers that are similar to those produced by the parent virus but exhibits a significantly longer replication cycle. Although the rate of expression of alpha and beta gene products appears to be unaffected by the mutation, DNA synthesis fails to proceed normally. Once initiated, DNA synthesis in mutant virus-infected cells proceeds at the same rate as with wild-type virus, but initiation is delayed by 48 h. The mutant virus also exhibits two predicted phenotypes: (i) hypersensitivity to the nucleoside analog 5-bromodeoxyuridine and (ii) retention of more uracil residues in genomic DNA than the parental virus. Together, these data suggest UL114 is required for the proper excision of uracil residues from viral DNA but in addition plays some role in establishing the correct temporal progression of DNA synthesis and viral replication. Although such involvement has not been previously observed in herpesviruses, a requirement for uracil DNA glycosylase in DNA replication has been observed in poxviruses.  相似文献   

17.
J J Lin  A Sancar 《Biochemistry》1989,28(20):7979-7984
Escherichia coli (A)BC excinuclease is the major enzyme responsible for removing bulky adducts, such as pyrimidine dimers and 6-4 photoproducts, from DNA. Mutants deficient in this enzyme are extremely sensitive to UV and UV-mimetic agents, but not to oxidizing agents, or ionizing radiation which damages DNA in part by generating active oxygen species. DNA glycosylases and AP1 endonucleases play major roles in repairing oxidative DNA damage, and thus it has been assumed that nucleotide excision repair has no role in cellular defense against damage by ionizing radiation and oxidative damage. In this study we show that the E. coli nucleotide excision repair enzyme (A)BC excinuclease removes from DNA the two major products of oxidative damage, thymine glycol and the baseless sugar (AP site). We conclude that nucleotide excision repair is an important cellular defense mechanism against oxidizing agents.  相似文献   

18.
The DNA base excision repair pathway is responsible for removal of oxidative and endogenous DNA base damage in both prokaryotes and eukaryotes. This pathway involves formation of an apurinic/apyrimidinic (AP) site in the DNA, which is further processed to restore the integrity of the DNA. In Escherichia coli it has been suggested that the major mode of repair involves replacement of a single nucleotide at the AP site, based on repair synthesis studies using oligonucleotide substrates containing a unique uracil base. The mechanism of the post-incision steps of the bacterial base excision repair pathway was examined using a DNA plasmid substrate containing a single U:G base pair. Repair synthesis carried out by repair-proficient ung, recJ and xon E.coli cell extracts was analyzed by restriction endonuclease cleavage of the DNA containing the uracil lesion. It was found that replacement of the uracil base was always accompanied by replacement of several nucleotides ( approximately 15) 3' of the uracil and this process was absolutely dependent on initial removal of the uracil base by the action of uracil-DNA glycosylase. In contrast to findings with oligonucleotide substrates, replacement of just a single nucleotide at the lesion site was not detected. These results suggest that repair patch length may be substrate dependent and a re-evaluation of the post-incision steps of base excision repair is suggested.  相似文献   

19.
Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung(+/+) and Ung(-/-) backcrossed mice. Interestingly, human cells displayed ~15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ~8-fold higher in mouse cells, constituting ~50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung(-/-) mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity.  相似文献   

20.
Kinetic parameters for uracil DNA glycosylase (E. coli)-catalysed excision of uracil from DNA oligomers containing dUMP in different structural contexts were determined. Our results show that single-stranded oligonucleotides (unstructured) are used as somewhat better substrates than the double-stranded oligonucleotides. This is mainly because of the favourable Vmax value of the enzyme for single-stranded substrates. More interestingly, however, we found that uracil release from loop regions of DNA hairpins is extremely inefficient. The poor efficiency with which uracil is excised from loop regions is a result of both increased Km and lowered Vmax values. This observation may have significant implications in uracil DNA glycosylase-directed repair of DNA segments that can be extruded as hairpins. In addition, these studies are useful in designing oligonucleotides for various applications in DNA research where the use of uracil DNA glycosylase is sought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号