首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
利用ISSR分子标记,选取内蒙古高原自东向西共15个锦鸡儿种群(7个小叶锦鸡儿种群,8个中间锦鸡儿种群)进行遗传多样性分析。结果表明:(1)7个小叶锦鸡儿种群总的多态位点百分数为98.19%,Nei’s基因多样性指数与Shannon信息指数分别为0.289 7、0.444 0;居群间遗传分化系数Gst为0.119 0,表明小叶锦鸡儿种群存在中等程度的遗传分化;居群间基因交流频繁,基因流(Nm)为3.701 0。(2)8个中间锦鸡儿种群多态位点百分数为99.7%,Nei’s基因多样性指数为0.312 8,Shannon信息指数为0.478 4;居群间遗传分化系数(Gst)为0.188 1,表明中间锦鸡儿种群存在较大的遗传分化,基因流(Nm)为2.157 8。(3)中间锦鸡儿遗传多样性及遗传分化均高于小叶锦鸡儿,这是中间锦鸡儿替代小叶锦鸡儿适应不良环境扩展分布的遗传基础。(4)邻接聚类分析结果显示,15个锦鸡儿种群表现为从东到西逐渐聚类,体现了这2个种在分布上的地理渐变性及地理替代性;遗传多样性各指数与气象因子及土壤因子之间的相关性分析表明,平均气温对锦鸡儿种群的遗传分化起着重要的作用。  相似文献   

2.
采用简单重复间序列(ISSR)方法,对鄂尔多斯高原从东向西降雨量逐渐减少选5个地区的中间锦鸡儿种群进行分子生态学研究的结果表明,随着这一地区多年平均降雨量由东向西的逐渐减少,中间锦鸡儿种群遗传多样性有所增加,大部分变异发生在种群内(79.95%),属异交类型,中间锦鸡儿群体间遗传距离缓慢增加,遗传一致度降低。这种随着水分递减呈现生态梯度变异的现象,说明水分变化特别是长期形成的水分条件对中间锦鸡儿的遗传多样性可能有一定的影响。  相似文献   

3.
毛乌素沙地柠条群体分子生态学 初步研究:RAPD证据   总被引:46,自引:12,他引:34  
毛乌素沙地柠条群体是一个杂种带。为了进一步阐明分子变异和基因流与生境或生态过渡带的联系,应用RAPD标记开展了柠条群体的分子生态学研究。根据RAPD数据利用Shannon信息指数估计了6个柠条群体的遗传多样性,发现大部分的分子变异存在于柠条群体之内(82.4%),只有少部分的分子变异存在于群体之间(17.6%)。又利用Nei指数统计了RAPD数据,也证实了大部分的遗传变异存在于群体之内。柠条锦鸡儿群体与中间锦鸡儿群体的遗传分化系数和遗传距离都很小。以上结果都肯定了柠条群体间和种间的基因流动。无论是从多态位点比率还是群体的遗传多样性来看,硬梁和硬梁覆沙群体是最小的,滩地覆沙群体则具有较高的水平。某些RAPD扩增片段的频率在柠条群体间有规律的变化也许具有着特殊的生态学意义,更可能是中性突变的随机固定。根据以上研究可以得出下列结论:①通过比较Shannon指数和Nei指数的统计结果,可以认为,对于异交植物来讲,Shannon指数在统计RAPD数据方面有用。②毛乌素沙地柠条群体之间存在着强大的基因流,物种的杂交性与生态过渡性一致  相似文献   

4.
食种子动物对三种锦鸡儿属植物繁殖更新的影响   总被引:1,自引:0,他引:1  
锦鸡儿属(Caragana)植物是黄土高原植被的重要组分,具有固氮、耐旱的特性,对黄土丘陵沟壑区的植被恢复具有重要意义。作者于2002–2003年对该属本地种白毛锦鸡儿(C.licentiana)和甘蒙锦鸡儿(C.opulens)及外来种中间锦鸡儿(C.intermedia)种子被动物取食情况进行了比较研究。2003年白毛锦鸡儿种子散落前的虫害率为88.2%,甘蒙锦鸡儿为29.7%±1.7%,中间锦鸡儿为43.2%±4.8%。种子落地后,白毛锦鸡儿和甘蒙锦鸡儿的种子被小啮齿动物取食的比例在各种微生境下均为100%,且取食速度很快,在种子放置后4d内即全部被取食。中间锦鸡儿种子被取食率则因微生境的不同而不同:在灌丛下被取食率为100%,在半阳坡的开阔草地上为85.0%±10.0%,在种植植物未成功的水平阶地上为31.0%±8.7%,且取食速度相对较慢。研究结果表明,食种子动物的取食大大减少了白毛锦鸡儿和甘蒙锦鸡儿的种子量以及种子传播萌发的机会。但食种子动物可能充当了白毛锦鸡儿4.0%硬实种子的传播者,从而有助于白毛锦鸡儿实现种子途径的更新;中间锦鸡儿种子无论在散落前还是散落后受食种子动物的影响均很小。  相似文献   

5.
郭卫华  李波  张新时  王仁卿 《生态学报》2007,27(10):4132-4140
多年生灌木沙棘和中间锦鸡儿是黄土高原生态重建的重要物种,设计人工模拟水分胁迫实验,测量沙棘和中间锦鸡儿蒸腾作用的各种指标,研究其蒸腾特性对水分胁迫的适应方式。结果表明,同等水分处理条件下,中间锦鸡儿单叶水平上的蒸腾速率高于沙棘。沙棘和中间锦鸡儿的蒸腾速率日进程在晴天、阴雨天和生长发育的不同阶段明显不同。夜间蒸腾占全天蒸腾的比例相当大,夜间蒸腾在不同物种之间、不同供水量之间存在明显差异,而且越干旱的环境比例越大。两种植物气孔阻力的季节变化格局在不同水分处理间大体相似。沙棘的昼夜蒸腾节律在各种水分处理条件下都表现出明显的气孔振荡现象,而中间锦鸡儿没有。叶片温度、光合有效辐射和气孔阻力是各种水分条件下沙棘和中间锦鸡儿蒸腾作用的共同的限制因子,相对于沙棘,中间锦鸡儿还更多地受到空气相对湿度的影响。  相似文献   

6.
杨明博  杨劼  杨九艳  清华  臧春鑫 《生态学报》2006,26(12):4027-4032
为了阐明环境条件对中间锦鸡儿适应状况的影响,在鄂尔多斯高原从东向西按照降雨逐渐减少的梯度选取了5个生境,从遗传多样性的角度出发,应用简单重复间序列(ISSR)方法,对各生境的中间锦鸡儿种群进行了分子生态学研究.结果表明随着生境由东向西的变化,多年平均降雨量的减少,中间锦鸡儿种群遗传多样性有所增加,大部分变异发生在种群内(79.95%),属异交类型,中间锦鸡儿群体间遗传距离缓慢增加,遗传一致度降低,说明生境条件的变化特别是长期形成的水分条件对中间锦鸡儿的遗传多样性有一定的影响。  相似文献   

7.
3种锦鸡儿种子萌发对温度和水分的响应   总被引:28,自引:7,他引:21  
对本地种白毛锦鸡儿(Caragana licentiana)和甘蒙锦鸡儿(Caragana opulens)以及外来种中间锦鸡儿(Caragana intermedia)种子进行了室内和野外萌发试验。结果表明,白毛锦鸡儿种子最适萌发温度为20℃,5℃时种子不萌发,甘蒙锦鸡儿最适萌发温度为10-20℃,在5℃和30℃时萌发率显著低于其它温度下的萌发率,中间锦鸡儿种子最适萌发温度为15-30℃,5℃下的萌发率为8.5%。室内萌发试验和野外萌发试验都表明白毛锦鸡儿种子萌发的速度缓慢,这体现在达到最大萌发率需要的时间长,萌发速度慢,且有4.0%的硬实种子,甘蒙锦鸡儿种子萌发的速度快,无硬实种子,高温下萌发受到一定的抑制。中间锦鸡儿种子在高温下萌发率高,速度快。启运白毛锦鸡儿种子萌发的最低土壤含水量为1.25%,甘蒙锦鸡儿和中间锦鸡儿的分别为3.75%和2.50%。白毛锦鸡儿种子萌发需要的土壤含水量低,种子萌发慢,且有小部分硬实种子,这可能是白毛锦鸡儿适应特殊环境的对策之一。  相似文献   

8.
杨明博  杨劼  杨九艳  清华  臧春鑫 《生态学报》2006,26(12):4027-4032
为了阐明环境条件对中间锦鸡儿适应状况的影响,在鄂尔多斯高原从东向西按照降雨逐渐减少的梯度选取了5个生境,从遗传多样性的角度出发,应用简单重复间序列(ISSR)方法,对各生境的中间锦鸡儿种群进行了分子生态学研究,结果表明随着生境由东向西的变化,多年平均降雨量的减少,中间锦鸡儿种群遗传多样性有所增加,大部分变异发生在种群内(79.95%),属异交类型,中间锦鸡儿群体间遗传距离缓慢增加,遗传一致度降低,说明生境条件的变化特别是长期形成的水分条件对中间锦鸡儿的遗传多样性有一定的影响。  相似文献   

9.
郭卫华  李波  张新时  王仁卿 《生态学报》2007,27(10):4132-4140
多年生灌木沙棘和中间锦鸡儿是黄土高原生态重建的重要物种,设计人工模拟水分胁迫实验,测量沙棘和中间锦鸡儿蒸腾作用的各种指标,研究其蒸腾特性对水分胁迫的适应方式。结果表明,同等水分处理条件下,中间锦鸡儿单叶水平上的蒸腾速率高于沙棘。沙棘和中间锦鸡儿的蒸腾速率日进程在晴天、阴雨天和生长发育的不同阶段明显不同。夜间蒸腾占全天蒸腾的比例相当大,夜间蒸腾在不同物种之间、不同供水量之间存在明显差异,而且越干旱的环境比例越大。两种植物气孔阻力的季节变化格局在不同水分处理间大体相似。沙棘的昼夜蒸腾节律在各种水分处理条件下都表现出明显的气孔振荡现象,而中间锦鸡儿没有。叶片温度、光合有效辐射和气孔阻力是各种水分条件下沙棘和中间锦鸡儿蒸腾作用的共同的限制因子,相对于沙棘,中间锦鸡儿还更多地受到空气相对湿度的影响。  相似文献   

10.
植株内种子蛋白多样性与繁育系统   总被引:16,自引:1,他引:15  
用聚丙烯酰胺凝胶电泳分析了3种锦鸡儿属植物种子的同工酶。分布在典型草原上的小叶锦鸡儿(Cara-gana microphylla Lam.)、典型荒漠的柠条锦鸡儿(C.korshinskii Kom.)或荒漠草原的中间锦鸡儿(C.intermedia Kuang etH.C.Fu),同一植株不同单粒种子酶谱表现显著的变异,类似于经典遗传分析中互显性等位基因分离现象,77株植株无一例外,因此可以进行  相似文献   

11.
Maowusu sandy grassland locating at an ecotone between typical desert and typical grassland contained several landscape ecotypes or elements where Caragana intermedia Kuang et H.C.Fu naturally distributed as a dominant species in shrub ecosystems. Based on a phenomenon of gene segregation of open-pollinated seeds within each plants similar to Mendel's segregation in F2, a study on testing the breeding systems of populations under 4 landscape ecotypes was conducted. Statistical data showed its availability in estimation of breeding system parameters when isozymes were used as genetic markers. Nei's genetic differentiation GST among 4 ecotypes in Maowusu was estimated at 0.07 from lap loci close to a GST =0.076 reported in the authors' laboratory. The results indicated that breeding systems of populations gradually changed from total outbreeding to partial inbreeding when water conditions worsened. Therefore, the former RAPD data, especially the cline of frequencies for a few polymorphic DNAs in different landscapes can be partially explained by gene fixation caused by selfing or inbreeding probably induced by drought. It was difficult to assess breeding system parameters by using one dimensional SDS polyacrylamide gel electrophoresis of seed proteins of C. intermedia simply due to a difficulty of genetic analysis of seed protein subunits.  相似文献   

12.
毛乌素沙地柠条群体分子生态学初步研究:RAPD证据   总被引:37,自引:5,他引:32  
毛乌素沙地柠条群体是一个杂种带,为了进一步阐明分子变异和基因流与生境或生态过渡带的联系,应用RAPD标记开展了柠条群体的分子生态学研究。根据RAPD数据利用Shannon信息指数估计了6个柠条群体的遗传多样性,发现大部分的分子变异存在于柠条群体之内(82.4%),只有少部分的分子变异存在于群体之间(17.6%),又利用ei指数统计了RAPD数据,也证实了大部分的遗传变异存在于群体之间,柠条锦鸡儿群  相似文献   

13.
Effects of habitat fragmentation on genetic diversity vary among species. This may be attributed to the interacting effects of species traits and landscape structure. While widely distributed and abundant species are often considered less susceptible to fragmentation, this may be different if they are small sized and show limited dispersal. Under intensive land use, habitat fragmentation may reach thresholds at which gene flow among populations of small-sized and dispersal-limited species becomes disrupted. Here, we studied the genetic diversity of two abundant and widespread bush crickets along a gradient of habitat fragmentation in an agricultural landscape. We applied traditional (G(ST), θ) and recently developed (G'ST', D) estimators of genetic differentiation on microsatellite data from each of twelve populations of the grassland species Metrioptera roeselii and the forest-edge species Pholidoptera griseoaptera to identify thresholds of habitat fragmentation below which genetic population structure is affected. Whereas the grassland species exhibited a uniform genetic structuring (G(ST) = 0.020-0.033; D = 0.085-0.149) along the whole fragmentation gradient, the forest-edge species' genetic differentiation increased significantly from D < 0.063 (G(ST) < 0.018) to D = 0.166 (G(ST) = 0.074), once the amount of suitable habitat dropped below a threshold of 20% and its proximity decreased substantially at the landscape scale. The influence of fragmentation on genetic differentiation was qualitatively unaffected by the choice of estimators of genetic differentiation but quantitatively underestimated by the traditional estimators. These results indicate that even for widespread species in modern agricultural landscapes fragmentation thresholds exist at which gene flow among suitable habitat patches becomes restricted.  相似文献   

14.
We investigate the joint effects of gene flow and selfing on the level of inbreeding depression, heterosis and genetic load in a subdivided population at equilibrium. Low gene flow reduces inbreeding depression and substantially increases heterosis. However, in highly self-fertilizing populations, inbreeding depression is independent of the amount of gene flow. When migration occurs via pollen, consanguinity of the reproductive system could have a negative influence on subpopulation persistence, in contrast to the case of isolated populations. However, with only seed migration, genetic load and heterosis depend mildly on the mating system. From an evolutionary point of view, we reach two main conclusions: first, outcrossing is selected for if gene flow is low; second, intermediate levels of gene flow could promote mixed mating systems, especially when migration occurs through pollen.  相似文献   

15.
BACKGROUND AND AIMS: Seven related species of Antirrhinum (A. siculum, A. majus, A. latifolium, A. linkianum, A. litigiosum, A. cirrhigherum and A. tortuosum) were studied in order to compare levels of genetic variation and its partitioning in them, and to check relationships between genetic patterns and the reproductive system. METHODS: Eight hundred and fifty-one plants were screened for variability at 13 allozyme loci by means of horizontal starch gel electrophoresis. Parameters of genetic diversity and its partitioning, the inbreeding coefficient as well as an indirect estimate of gene flow based on the equation: Nm = (1 - G(ST))/4G(ST), were calculated. KEY RESULTS: Genetic variability in A. siculum was found to be the lowest known in the genus. Mean values of F(IT) and F(IS) were mostly positive and not significantly different from zero. Population differentiation (F(ST)) ranged between 6.1 in A. tortuosum and 17.6 in A. linkianum. The inbreeding coefficient within populations ranged between F(IS) = -0.5 in A. tortuosum and F(IS) = 1 in A. siculum. Estimates of gene flow ranged between Nm = 15 in A. majus (considered as very high) to Nm = 0.42 in A. siculum (considered as low). CONCLUSIONS: Correlation was found between levels of diversity and differentiation on one hand, and the reproductive system of the studied taxa on the other. Striking differences among species in the inbreeding coefficient (F(IS)) show different reproductive systems, which mostly support previous reports. Strategies for the conservation of A. siculum are recommended, such as preservation of natural populations as well as ex situ preservation of seeds from different populations.  相似文献   

16.
Plants offer excellent models to investigate how gene flow shapes the organization of genetic diversity. Their three genomes can have different modes of transmission and will hence experience varying levels of gene flow. We have compiled studies of genetic structure based on chloroplast DNA (cpDNA), mitochondrial DNA (mtDNA) and nuclear markers in seed plants. Based on a data set of 183 species belonging to 103 genera and 52 families, we show that the precision of estimates of genetic differentiation (G(ST)) used to infer gene flow is mostly constrained by the sampling of populations. Mode of inheritance appears to have a major effect on G(ST). Maternally inherited genomes experience considerably more subdivision (median value of 0.67) than paternally or biparentally inherited genomes (approximately 0.10). G(ST) at cpDNA and mtDNA markers covary narrowly when both genomes are maternally inherited, whereas G(ST) at paternally and biparentally inherited markers also covary positively but more loosely and G(ST) at maternally inherited markers are largely independent of values based on nuclear markers. A model-based gross estimate suggests that, at the rangewide scale, historical levels of pollen flow are generally at least an order of magnitude larger than levels of seed flow (median of the pollen-to-seed migration ratio: 17) and that pollen and seed gene flow vary independently across species. Finally, we show that measures of subdivision that take into account the degree of similarity between haplotypes (N(ST) or R(ST)) make better use of the information inherent in haplotype data than standard measures based on allele frequencies only.  相似文献   

17.
Michalski SG  Durka W 《Molecular ecology》2007,16(22):4715-4727
The mating system of a plant is the prime determinant of its population genetic structure. However, mating system effects may be modified by postzygotic mechanisms like inbreeding depression. Furthermore, historical as well as contemporary ecological factors and population characteristics, like the location within the species range can contribute to genetic variability. Using microsatellite markers we assessed the population genetic structure of the wind-pollinated Juncus atratus in 16 populations from peripheral and nearly central areas of the distribution range and studied the mating system of the species. In three peripheral populations, outcrossing rates at seeds stage were low (mean t(m) = 5.6%), suggesting a highly autogamous mating system. Despite this fact, on adult stage both individual heterozygosity (mean H(O) = 0.48) and gene diversity (mean H(E) = 0.58) were high even in small populations. Inbreeding coefficients were consistently low among all populations (mean F(IS) = 0.15). Within the three peripheral populations indirect estimates of lifetime inbreeding depression were surprisingly high (delta(eq) = 0.96) and inbreeding depression could be shown to act mostly on early seedling establishment. Similar conditions of autogamy combined with high inbreeding depression are typical for plants with a large lifetime genomic mutation rate that cannot avoid selfing by geitonogamy. However, the results presented here are unexpected for small-statured, herbaceous plants. Substantial genetic differentiation among all populations was found (mean F(ST) = 0.24). An isolation-by-distance pattern was apparent on large scale but not on local scale suggesting that the overall pattern was largely influenced by historical factors, e.g. colonization, whereas locally genetic drift was of greater importance than gene flow. Peripheral populations exhibited lower genetic diversity and higher inbreeding coefficients when compared with subcentral populations.  相似文献   

18.
Isolation and small size of populations as a result of habitat destruction and fragmentation may negatively affect plant fitness through pollinator limitation and increased levels of inbreeding. To increase genetic variation in small populations of rare plants artificial gene flow has been suggested as a management tool. We investigated whether pollinator limitation and inbreeding depression could reduce fitness in Gentianella germanica, an endangered biennial of increasingly fragmented calcareous grasslands in Central Europe. We experimentally excluded pollinators and generated progenies by hand-pollinating flowers with pollen from different distances. G. germanica was highly selfing. Pollinator exclusion strongly reduced seed set, indicating that pollinator limitation could potentially reduce plant fitness. Germination rate as well as number of leaves and rosette size of progeny from 10-m crosses was higher than that of progeny from open pollinations, self-, 1-m, and interpopulation crosses. After 6 mo of growth differences in the number of surviving plants persisted, whereas differences in plant size did not. The results suggest that inbreeding depression may reduce plant performance in G. germanica. Outbreeding depression in the performance of progeny from interpopulation crosses indicates that caution is necessary in using artificial interpopulation gene flow as a management tool.  相似文献   

19.
Pinus flexilis (limber pine) is patchily distributed within its large geographic range; it is mainly restricted to high elevations in the Rocky Mountains and the Basin and Range region of western North America. We examined patterns of allozyme diversity in 30 populations from throughout the species' range. Overall genetic diversity (H(e) = 0.186) was high compared with that of most other pine species but was similar to that of other pines widespread in western North America. The proportion of genetic diversity occurring among populations (G(ST) = 0.101) was also high relative to that for other pines. Observed heterozygosity was less than expected in 28 of the 30 populations. When populations were grouped by region, there were notable differences. Those in the Basin and Range region had more genetic diversity within populations, a higher proportion of genetic diversity among populations, and higher levels of inbreeding within populations than populations from either the Northern or Utah Rocky Mountain regions. Patterns of genetic diversity in P. flexilis have likely resulted from a complex distribution of Pleistocene populations and subsequent gene flow via pollen and seed dispersal.  相似文献   

20.
Fragmentation and isolation are expected to have a considerable impact on viability and recruitment in populations of rare species. Platanthera leucophaea (Orchidaceae), a rare orchid, currently exists in a fragmented landscape of its natural habitat. Floral morphology suggests this species is predominantly outcrossing, but surveys of allozyme diversity suggest high, variable levels of inbreeding in populations (F(IS) = -0.078 to 1.0). This study examines the potential cost of inbreeding and the extent to which inbreeding depression can vary temporally and in populations of different size and genetic structure. Flowers were pollinated by hand in one large population and one small population over three seasons. Seed set, seed mass, and seed viability were compared among self-, outcross-, and open-pollinated fruits. Seed set was greater than 50% in both populations for all years of study. High levels of inbreeding depression were detected in seed viability but not in seed mass in both populations. However, the magnitude of inbreeding depression differed over years and between populations, a pattern that reflects differing environmental conditions and variable evolutionary and demographic histories. Consequently, conservation of this species will be most successful if outcrossing is promoted in populations by maximizing population size and genetic variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号