首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用高压液相色谱法对五年生扦插银杏各部位及银杏组织培养细胞中银杏内酯B和白果内酯的含量进行了测定.结果表明银杏内酯B和白果内酯在银杏植物各部位的含量差异很大.银杏内酯B在银杏叶中含量最高,白果内酯在银杏侧根中含量最高.在6,7-v培养基下银杏组织培养细胞中同时测出银杏内酯B和白果内酯,提示用植物组织培养方法有可能同时产生银杏内酯B和白果内酯.  相似文献   

2.
White matter lesion (WML) is caused by chronic cerebral hypoperfusion, which are usually associated with cognitive impairment. Evidence from recent studies has shown that ginkgolide B has a neuroprotective effect that could be beneficial for the treatment of ischemia; however, it is not clear whether ginkgolide B has a protective effect on WML. Our data show that ginkgolide B can promote the differentiation of oligodendrocyte precursor cell (OPC) into oligodendrocytes and promote oligodendrocyte survival following a WML. Ginkgolide B (5, 10, 20 mg/kg) or saline is administered intraperitoneally every day after WML. After 4 weeks, the data of Morris water maze suggested that rats’ memory and learning abilities were impaired, and the administration of ginkgolide B enhanced behavioral achievement. Also, treatment with ginkgolide B significantly attenuated this loss of myelin. Our result suggests that ginkgolide B promotes the differentiation of OPC into oligodendrocytes. We also found that ginkgolide B ameliorates oligodendrocytes apoptosis. Furthermore, ginkgolide B enhanced the expression of phosphorylated Akt and CREB. In conclusion, our data firstly show that ginkgolide B promotes oligodendrocyte genesis and oligodendrocyte myelin following a WML, possibly involving the Akt and CREB pathways.  相似文献   

3.
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disease characterized by massive enlargement of fluid-filled cysts in the kidney. However, there is no effective therapy yet for this disease. To examine whether ginkgolide B, a natural compound, inhibits cyst development, a Madin-Darby canine kidney (MDCK) cyst model, an embryonic kidney cyst model, and a PKD mouse model were used. Interestingly, ginkgolide B significantly inhibited MDCK cyst formation dose dependently, with up to 69% reduction by 2 μM ginkgolide B. Ginkgolide B also significantly inhibited cyst enlargement in the MDCK cyst model, embryonic kidney cyst model, and PKD mouse model. To determine the underlying mechanisms, the effect of ginkgolide B on MDCK cell viability, proliferation, apoptosis, chloride transporter CFTR activity, and intracellular signaling pathways were also studied. Ginkgolide B did not affect cell viability, proliferation, and expression and activity of the chloride transporter CFTR that mediates cyst fluid secretion. Ginkgolide B induced cyst cell differentiation and altered the Ras/MAPK signaling pathway. Taken together, our results demonstrate that ginkgolide B inhibits renal cyst formation and enlargement, suggesting that ginkgolide B might be developed into a novel candidate drug for ADPKD.  相似文献   

4.
真菌感染作为威胁人类健康的传染性疾病之一,是普遍的全球性问题。本研究通过在黑曲霉的孢子悬浮液中添加不同浓度的银杏内酯,收集黑曲霉菌丝体,评估黑曲霉线粒体的结构和功能,考察不同银杏内酯B和C对黑曲霉的抗真菌效果。透射电子显微镜扫描发现经银杏内酯B处理后的黑曲霉线粒体表现出明显的空泡化,基质结构被破坏;线粒体三羧酸循环中关键酶琥珀酸脱氢酶和苹果酸脱氢酶活性下降,线粒体膜电位降低,丙二醛和活性氧水平显著升高。研究结果初步揭示了银杏内酯以剂量依赖的方式损坏线粒体膜的完整性,破坏线粒体结构,进一步损害线粒体功能;银杏内酯B的抗黑曲霉效果要显著高于银杏内酯C。  相似文献   

5.
Preparation of a tritiated ginkgolide   总被引:1,自引:0,他引:1  
Ginkgolide B, a constituent of the tree Ginkgo biloba, was radiolabeled with the beta-emitter tritium ([(3)H]) in two steps from ginkgolide C. First, a triflate precursor was prepared utilizing the selective reactivity of 7-OH in ginkgolide C; the triflate was then reduced with sodium borotritide to yield tritiated ginkgolide B ([(3)H]GB) in good yield and high specific activity. The tritiated ginkgolide will be an important tool for studying neuromodulatory properties of ginkgolides.  相似文献   

6.
【目的】银杏提取物在防治心血管系统和神经系统疾病方面发挥重要功能。鉴于肠道菌群已被认定为一个新兴的药物作用靶标,研究银杏双黄酮和银杏内酯与人体肠道菌群之间的相互作用具有非常重要的意义,这将为进一步理解银杏提取物的功能和作用机制奠定基础。【方法】本研究使用人体肠道菌群体外批量发酵、细菌总量测定、细菌16S rDNA高通量测序、气相色谱和液相色谱检测等方法,对银杏双黄酮和银杏内酯B单独或复合在体外与人体肠道菌群的相互作用进行研究。【结果】银杏双黄酮和银杏内酯B单独添加对人体肠道菌群总量、肠道菌群结构组成和短链脂肪酸产量没有显著影响。但有意思的是,复合添加银杏双黄酮和银杏内酯B后,Coriobacteriaceae科和Cupriavidus属细菌的比例显著升高,Gemella菌细菌比例显著降低。功能基因预测分析发现,编码K00076、K12143、K07716和K00220的基因在复合添加银杏双黄酮和银杏内酯B后显著富集。K00076和K00220是氧化还原酶,催化CH-OH供体基团的电子转移,可能参与银杏双黄酮和银杏内酯B的代谢和修饰。HPLC检测发现,人体肠道菌群体外对银杏双黄酮和银杏内脂B的降解修饰率分别为70%和35%左右。【结论】体外复合添加银杏双黄酮和银杏内酯B可显著改变肠道某些细菌的丰度。同时,体外研究表明肠道菌群具有代谢修饰银杏双黄酮和银杏内酯B的功能。  相似文献   

7.
Platelet-activating factor (PAF), a biologically active lipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphoholine), is identified in different regions of brain, including hippocampus. Specific PAF-activated receptors (PAFRs) are expressed in corresponding brain areas. PAF has been proposed to be a retrograde messenger of long-term potentiation (LTP): the antagonist of PAFRs, ginkgolide B (or BN52021) prevents induction of LTP. Recently it has been found that ginkgolide B is also an efficient blocker of the glycine receptor (GlyR) operated chloride channels (IC(50)=270+/-10 nM in hippocampal pyramidal neurons). The question is as follows: is the alteration of LTP by BN52021 due to the PAF antagonism or to the inhibition of glycine-gated chloride channels? We have studied the effects of ginkgolides B and J on LTP induced in the CA1 area of rat hippocampus. Ginkgolide J which is the weakest blocker of PAFR (IC(50)=54 microM, as compared to IC(50)=2.5 microM for ginkgolide B) inhibits GlyR-operated channels with IC(50)=2.0 microM. This assures a convenient concentration window which allows to inhibit GlyR-operated channels without affecting PAFRs. An amount of 5 microM of ginkgolide J did not prevent the induction of LTP, while ginkgolide B (5 microM) completely inhibited this phenomenon. The effect of ginkgolide B on LTP did not alter considerably if GlyRs were blocked by strychnine (2 microM). Strychnine itself had no significant effect on the induction of LTP. Both ginkgolides and strychnine significantly facilitated short-term potentiation (STP). Our data support a hypothesis according to which ginkgolides affect LTP by inhibiting PAFRs.  相似文献   

8.
Wang ZY  Mo XF  Jiang XH  Rong XF  Miao HM 《生理学报》2012,64(4):417-424
One common feature of glaucoma, optic neuritis and some other optic nerve diseases is sustained and irreversible apoptosis of retinal ganglion cells (RGCs). Ginkgolide B is believed to protect neurons in brain and contribute to neurite outgrowth and synapse formation. The aim of the present study was to explore the effects of Ginkgo biloba extract (EGB761) and ginkgolide B on axonal growth of RCGs. Retina explants were cultured in three-dimensional tissue culture system, and the number and length of neurites were analyzed. Immunohistochemistry staining was performed to confirm that the neurite observed was axon of RGCs. TUNEL and activated caspase-3 staining were also applied to observe RGCs apoptosis. The result shows that neurites of RGCs treated with EGB761 or ginkgolide B were more and longer than those in control. The neurite is proved to be the axon of RGCs by immunostaining. Furthermore, compared with control group, RGCs treated with ginkgolide B showed decreased cellular apoptosis and inhibited caspase-3 activation. These results suggest ginkgolide B can promote RGCs axon growth by protecting RGCs against apoptosis.  相似文献   

9.
银杏叶中银杏内酯B及白果内酯的分离鉴定   总被引:2,自引:0,他引:2  
前文中作者已报道从我国特有植物银杏(Ginkgo biloba L.)的叶子中分到银杏内酯A及C(ginkgolide A,C),本文报道从银杏叶中分到的另外二个结晶,经理化性质、薄层层析、红外光谱及质谱分析,鉴定结晶Ⅲ为银杏内酯B(ginkgolide B),结晶Ⅳ为白果内酯(bilobalide),后者为国内首次分离。  相似文献   

10.
银杏悬浮培养细胞的生长、分化与萜内酯化合物的积累   总被引:6,自引:0,他引:6  
研究了来源于银杏种子胚和幼苗茎的悬浮细胞的生长、分化和培养物中的白果内酯、银杏内酯A和B的含量变化。结果表明:在悬浮培养中,细胞聚集而成的细胞团大小、细胞中叶绿体的分化、外植体来源都影响培养物中的萜内酯的种类和含量,胚来源的悬浮细胞培养物中,银杏内酯B仅存在于直径<2mm的小细胞团悬浮培养中,且在<1 mm的细胞团中的含量最高,达0.437 mg /g(DW);而直径>3mm的细胞团悬浮培养物中只含有白果内酯和银杏内酯A。相同大小的悬浮细胞团中,胚来源的细胞中萜内酯含量高于茎来源的细胞。  相似文献   

11.
Wang CY  Wu YM  Xiao L  Xue HM  Wang R  Wang FW  He RR 《生理学报》2008,60(1):17-22
本研究在30只麻醉雄性Sprague-Dawley大鼠隔离灌流颈动脉窦区观察了银杏苦内酯B(ginkgolide B)对颈动脉窦压力感受性反射的影响.结果显示:(1)银杏苦内酯B(0.1,1,10 pmol/L)隔离灌流序侧颈动脉窦区,使压力感受性机能曲线向右上方移位,曲线最大斜率(peak slop,PS)减小,血压反射性下降(reflex decrease,RD)幅度减小(P<0.01),阂压(threshold pressure,TP)、平衡压(equilibrium pressure,EP)和饱和压(saturation pressure,SP)均升高(P<0.05,P<0.01).其中PS、RD、TP、EP和sP呈明显的剂量依赖性;(2)预先应用钙通道开放剂Bay K8644(500 nmol/L),可以完伞取消银杏苦内酯B的抑制作用.(3)预先应用钾通道阻断剂四乙铵(tetraethylammonium,TEA,1 mmol/L),银杏苦内酯B的上述作用也被完全取消.结果表明,银杏苦内酯B对大鼠颈动脉实压力感受性反射有抑制作用,此作用与银杏苦内酯B减少颈动脉窦压力感受器神经末梢钙离子内流和增加钾离子外流有关.  相似文献   

12.
Ginkgolide and bilobalide are major trilactone constituent of Ginkgo biloba leaves and have been shown to exert powerful neuroprotective properties. The aims of this study were to observe the inhibitory effects of ginkgolide and bilobalide on the activation of microglial cells induced by oxygen–glucose deprivation and reoxygenation (OGD/R) and the specific mechanisms by which these effects are mediated. For detecting whether ginkgolide and bilobalide increased cell viability in a dose-dependent manner, BV2 cells were subjected to oxygen–glucose deprivation for 4 h followed by 3 h reoxygenation with various concentrations of drugs (6.25, 12.5, 25, 50, and 100 μg/ml). The extent of apoptosis effect of OGD/R with or without ginkgolide and bilobalide treatment were also measured by Annexin V-FITC/PI staining. Similarly, the levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8, and IL-10 were detected using a specific Bio-Plex Pro? Reagent Kit. The effects of ginkgolide and bilobalide on protein levels of TLR2/4, MyD88, p-TAK1, p-IKKβ, p-IkBα, NF-κB p65, Bcl-2, Bax, Bak, RIP3, cleaved-Caspase-3, cleaved PARP-1 and cellular localization of NF-κB p65 were evaluated by Western blot and double-labeled immunofluorescence staining, respectively. OGD/R significantly decreased the cell viability and increased the release of IL-1β, IL-6, IL-8, IL-10, TNF-α in BV2 microglia cells; these effects were suppressed by ginkgolide and bilobalide. Meanwhile, ginkgolide and bilobalide also attenuated the OGD/R-induced increases in TLR2, TLR4, MyD88, Bak, RIP3 levels and reversed cleaved caspase-3/caspase-3, Bax/Bcl-2 and cleaved PARP-1/PARP-1 ratio. Furthermore, ginkgolide and bilobalide also downregulated p-TAK1, p-IkBα, and p-IKKβ and inhibited the OGD/R-induced transfer of NF-κB p65 from cytoplasm to nucleus in BV2 microglia cells. The results showed that ginkgolide and bilobalide can inhibit OGD/R-induced production of inflammatory factors in BV2 microglia cells by regulating the TLRs/MyD88/NF-κB signaling pathways and attenuating inflammatory response. The possible mechanism of anti-inflammatory and neuroprotective effects of ginkgolides results from the synergistic reaction among each monomer constituents.  相似文献   

13.

Aims

In this report, the transport of ginkgolides with different lipophilicities was investigated using an hCMEC/D3 cell monolayer as a blood–brain barrier (BBB) cell model in vitro in an attempt to explain ginkgolide transport path mediated by lipophilicity.

Main methods

The log P values of ginkgolides were determined by measuring the distribution of the molecule between oil and water. Additionally, the cytotoxicity of ginkgolides on hCMEC/D3 cells was assayed with the MTT method. Ginkgolide contents were determined with an ultra performance liquid chromatograph equipped with an evaporative light scattering detector (ULPC–ELSD) method. Apparent permeability coefficients (Papp) and efflux ratios (PappBL → AP/PappAP → BL) were then calculated to describe the transport characteristics of ginkgolide.

Key findings

The transport of ginkgolide A, ginkgolide B, ginkgolide C, and ginkgolide J across the hCMEC/D3 cell monolayer was non-directional. Additionally, ginkgolide C transport on the cell monolayer was time- and concentration-dependent in the paracellular pathway controlled by cytochalasin D (a tight junction modulator). The transport of ginkgolide N, ginkgolide L, and ginkgolide K across the cell monolayer displayed clear directionality at low ginkgolide concentrations. This behavior indicated that the transport of ginkgolide N, ginkgolide L, and ginkgolide K was influenced by the transcellular pathway containing an efflux protein accompanied by the paracellular pathway for passive diffusion. Additionally, the transport of ginkgolide K was increased significantly by co-culturing with a P-gp inhibitor.

Significance

These findings provide important information for elucidating ginkgolide transport pathways and may be beneficial for the design of ginkgolide molecules with high neuroprotective effects.  相似文献   

14.
目的:通过观察缺氧预适应和银杏内酯B预处理对小鼠急性缺氧的影响,了解银杏内酯B的脑保护作用。方法:采用小鼠常压缺氧模型,观察小鼠的行为学并记录各组小鼠的最后死亡时间,脑组织含水量,用RT-PCR、Western blot分别检测各组小鼠皮层组织中RTP801mRNA表达和EPO蛋白表达。结果:银杏内酯B和低氧预适应均能明显延长常压缺氧小鼠的存活时间,降低脑水肿程度,并且银杏内酯组和低氧预适应组RTP801mRNA表达和EPO的表达均明显增加。结论:银杏内酯B与低氧预适应具有相类似的对抗小鼠急性低氧的作用,其脑保护作用与上调RTPS01mRNA和EPO蛋白的表达有关。  相似文献   

15.
Ginkgo biloba extract EGb761 has been shown to protect against β-amyloid peptide (Aβ)-induced neurotoxicity but the specific mechanisms remain unclear. In the present study, effects of EGb761 and two of its constituents, quercetin and ginkgolide B, on the cytotoxic action of Aβ (1-42) were tested with human neuroblastoma SH-SY5Y cells. We found that EGb761 was able to block Aβ (1-42)-induced cell apoptosis, reactive oxygen species (ROS) accumulation, mitochondrial dysfunction and activation of c-jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt signaling pathways. Both quercetin and ginkgolide B may be involved in the inhibitory effects of EGb761 on JNK, ERK1/2 and Akt signaling pathways. Ginkgolide B also helped to improve mitochondrial functions but quercetin failed to show this effect. Additional experiments suggest that, protective effects of EGb761 against Aβ toxicity may be associated with its antioxidant and platelet activating factor (PAF) antagonist activities. Quercetin but not ginkgolide B is one of the constituents responsible for the antioxidant action of EGb761. Both quercetin and ginkgolide B may be involved in the PAF antagonist activity of EGb761. Overall, actions of individual EGb761 components provide further insights into direct mechanisms underlying the neuroprotective effects of EGb761.  相似文献   

16.
Chen B  Cai J  Song LS  Wang X  Chen Z 《Life sciences》2005,76(10):1111-1121
Ginkgo biloba extract (GBE), a valuable natural product for cerebral and cardiovascular diseases, is mainly composed of two classes of constituents: terpene lactones (e.g., ginkgolide A and B, bilobalide) and flavone glycosides (e.g., quercetin and kaempferol). Its electrophysiological action in heart is yet unclear. In the present study, using whole-cell patch clamp technique, we investigated electrophysiological effects of GBE on cation channel currents in ventricular myocytes isolated from rat hearts. We found that GBE 0.01-0.1% inhibited significantly the sodium current (I(Na)), L-type calcium current (I(Ca)) and transient outward potassium current (IK(to)) in a concentration-dependent manner. Surprisingly, its main ingredients, ginkgolide A (GB A), ginkgolide B (GB B) and bilobalide (GB BA) at 0.1 mM did not exhibit any significant effect on these cation channel currents. These results suggested that GBE is a potent non-selective cation channel modulator in cardiaomyocytes. Other constituents (rather than GB A, GB B and GB BA) might be responsible for the observed inhibitory effects of GBE on cation channels.  相似文献   

17.
Ginkgolides, active constituents of Ginkgo biloba extracts, potently block the glycine receptor chloride channel (GlyR). Ginkgolides A, B, C and J are structurally similar, varying only by the presence or absence of oxygens at their R1 and R2 positions. The aim of this study was to understand how variable ginkgolide groups bind to pore-lining 2' and 6' residues in the α1 GlyR. Ginkgolide potency was not affected by G2'A or G2'S mutations, suggesting 2' residues are not important for ginkgolide coordination. Analysis of the α1T6'S GlyR suggests that ginkgolides bind to this receptor via hydrogen bonds between T6'S and ginkgolide R1 hydroxyls. The abolition of block by the T6'A and T6'V mutations but not by the T6'S mutation implies the existence a second transmembrane domain α-helical kink formed by hydrogen bonding between 6' threonine and serine sidechains and backbone carbonyl oxygens. We also found that ginkgolide A binds in different orientations in the closed and open states of a mutant GlyR, possibly reflecting its enhanced flexibility relative to other ginkgolides. Together these results indicate that small variations in ginkgolide structure or pore structure can lead to drastic potency variations. This property may be exploited to create improved pharmacological probes for discriminating among anionic Cys-loop receptor isoforms with 6' structural variations.  相似文献   

18.
In order to evaluate the composition of active constituents in phytopharmaceutical preparations, valid analytical methods are required. For the determination of the active terpene constituents of Ginkgo biloba (the ginkgolides and bilobalide), a liquid chromatography-mass spectrometry (LC-MS) method has been developed using atmospheric pressure chemical ionisation (APCI) in the negative ion mode. This detection mode was found to be much more sensitive and selective compared to UV; indeed the ginkgo terpene trilactones lack strong UV chromophores and flavonoids interfere with their UV detection. LC-APCI/MS detection allowed a considerable reduction in analysis time when compared to LC-UV, because LC resolution was only needed between the pair of isomers ginkgolide B and ginkgolide J. All compounds were selectively detected by single ion monitoring of their specific deprotonated molecules [M-H]-. The samples were directly injected without pre-purification, and a fast gradient was applied, reducing the total time of analysis to 14 min. With this method, the ginkgo terpene trilactones were detected on-line in the picogram range. Several commercial ginkgo preparations on the Swiss market were analysed, and the ginkgolide and bilobalide contents were evaluated using the method described.  相似文献   

19.
The effect of biotic elicitors on the production of bilobalide and ginkgolides in Ginkgo biloba cell suspension cultures was studied. The treatment of cell cultures with Candida albicans and Staphylococcus aureus as elicitors increased the amounts of bilobalide (BB), ginkgolide A (GA) and ginkgolide B (GB), with slight growth inhibition. The native bacterial elicitor was more effective for secondary metabolite accumulations both in cells and culture medium than autoclaved. However, exposure times of the cells to the elicitors strongly influenced the production of BB, GA and GB. This study suggests that biotic elicitors can regulate the production of BB, GA and GB either directly or indirectly. These results also describe the establishment of optimum conditions that determine the effects of biotic elicitors on secondary metabolism of bilobalides.  相似文献   

20.
In this report, we examine the cytotoxic effect of ginkgolides, the major components of Ginkgo biloba extracts, on the blastocyst stage of mouse embryos and on subsequent early postimplantation embryonic development in vitro. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay revealed that blastocysts treated with 5 or 10muM ginkgolide A or ginkgolide B showed increased apoptosis versus untreated controls. This could be correlated with the observation that ginkgolide-treated blastocysts showed a significant reduction in the average number of total cells in the blastocyst and trophectoderm/inner cell mass lineage versus controls. In addition, ginkgolide-pretreated blastocysts showed normal levels of implantation on culture dishes in vitro, but significantly fewer embryos reached the later stages of embryonic development in the treatment groups versus the controls, instead dying at relatively early stages of development. Our results collectively indicate that ginkgolide treatment of mouse blastocysts induces apoptosis, decreases cell numbers, retards early postimplantation blastocyst development, and increases early-stage blastocyst death. These novel findings provide important new insights into the effect of Ginkgo biloba extracts on mouse blastocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号