首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The leucine genes of Bacillus subtilis have been cloned directly from the chromosomal DNA into Escherichia coli leuB cells by selection for the Leu+ phenotype using RSF2124 as a vector plasmid. The hybrid plasmid designated RSF2124-B·leu contained a 4.2 megadalton fragment derived from B. subtilis DNA, including the leu genes. The fragment had one site susceptible to EcoRI* and another site susceptible to BamNI endonuclease. Among the three fragments produced by EcoRI* and BamNI endonucleases, the 1.2 megadalton fragment had the ability to transform B. subtilis leuA, leuB and leuC auxotrophs to leu +. However, B. subtilis ilvB and ilvC auxotrophs were not rescued even by the whole 4.2 megadalton fragment present in the hybrid plasmid. -Isopropylmalate dehydrogenase (leuB gene product) activity found in E. coli cells containing the hybrid plasmid was about 60% of that in E. coli wild type cells, despite the high copy number (7.8) of the plasmid per chromosome observed.  相似文献   

2.
Summary Following shotgun cloning of EcoRI fragments of Bacillus subtilis 168 chromosomal DNA in pBR322 a hybrid plasmid, pUL720, was isolated which complements Escherichia coli K12 mutants defective for argA, B, C, D, E, F/I, carA and carB. Restriction analysis revealed that the insert of pUL720 comprises four EcoRI fragments, of sizes 12.0, 6.0, 5.0 and 0.8 kbp. Evidence was obtained from subcloning, Southern blot hybridisation, enzyme stability studies and transformation of B. subtilis arginine auxotrophs that the 12 kbp EcoRI fragment carries all the arg genes. It proved impossible to subclone the intact fragment in isolation in the multicopy vectors pBR322, pBR325 or pACYC184, and although it could be subcloned in the low copy vector pGV1106, propagation of the hybrid rapidly resulted in the selection of stable derivatives carrying, near one end, an insertion of 1 kbp of DNA originating from the E. coli chromosome. These and other stable derivatives resulting from subcloning the 12 kbp EcoRI fragment have lost only the ability to complement for E. coli argC, and it is suggested that sequences located close to the equivalent of argC are involved in destabilising plasmids bearing the 12 kbp fragment in E. coli in a copy number dependent manner.Abbreviations kop kilobase pairs - OcTase ornithine carbamoyl transferase - CPSase carbamoyl phosphate synthetase  相似文献   

3.
The 55-kilobase plasmid, pLS20, of Bacillus subtilis (natto) 3335 promotes transfer of the tetracycline resistance plasmid pBC16 from B. subtilis (natto) to the Bacillus species B. anthracis, B. cereus, B. licheniformis, B. megaterium, B. pumilus, B. subtilis, and B. thuringiensis. Frequency of pBC16 transfer ranged from 2.3 x 10(-6) to 2.8 x 10(-3). Evidence for a plasmid-encoded conjugationlike mechanism of genetic exchange includes (i) pLS20+ strains, but not pLS20- strains, functioned as donors of pBC16; (ii) plasmid transfer was insensitive to the presence of DNase; and (iii) cell-free filtrates of donor cultures did not convert recipient cells to Tcr. Cotransfer of pLS20 and pBC16 in intraspecies matings and in matings with a restriction-deficient B. subtilis strain indicated that pLS20 was self-transmissible. In addition to mobilizing pBC16, pLS20 mediated transfer of the B. subtilis (natto) plasmid pLS19 and the Staphylococcus aureus plasmid pUB110. The fertility plasmid did not carry a selectable marker. To facilitate direct selection for pLS20 transfer, plasmid derivatives which carried the erythromycin resistance transposon Tn917 were generated. Development of this method of genetic exchange will facilitate the introduction of plasmid DNA into nontransformable species by use of transformable fertile B. subtilis or B. subtilis (natto) strains as intermediates.  相似文献   

4.
Summary The drug resistance genes on the r-determinants component of the composite R plasmid NR1 were mapped on the EcoRI restriction endonuclease fragments of the R plasmid by cloning the fragments using the plasmid RSF2124 as a vector. The sulfonamide (Su) and streptomycin/spectinomycin (Sm/Sp) resistance genes are located on EcoRI fragment G of NR1. The expression of resistance to mercuric ions (Mer) requires both EcoRI fragment H and I of NR1. The expression of chloramphenicol (Cm) and fusidic acid (Fus) resistance requires EcoRI fragments A and J of NR1. The kan fragment of the related R plasmid R6-5 can substitute for EcoRI fragment J of NR1 in the expression of Cm and Fus resistance. The structural genes for Cm and Fus resistance appear to be a part of an operon whose expression is controlled by the same promoter.  相似文献   

5.
The root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855 was mapped by means of the restriction endonuclease EcoRI. The circular arrangement of the more than 60 fragments generated by this enzyme was established by electrophoretic analysis of pBR322 clones harboring overlapping segments of pRi1855 derived by partial digestion with EcoRI. A large region of the plasmid comprising the T-DNA was mapped with two additional enzymes, BamHI and HindIII, by means of Southern blot hybridizations between the fragments generated by the three enzymes.  相似文献   

6.
Summary The streptococcal plasmids pMV158 and pLS1, grown in Streptococcus pneumoniae, were transferred to Bacillus subtilis by DNA-mediated transformation. The plasmids were unchanged in the new host; no deletions were observed in 80 instances of transfer. Their copy number was similar to that in S. pneumoniae. Two B. subtilis plasmids, pUB110 and pBD6, could not be transferred to S. pneumoniae. Hybrid plasmids were produced by recombining the EcoRI fragment of pBD6 that confers Kmr with EcoRI-cut pLS1, which confers Tcr. The simple hybrid, pMP2, was transferable to both species and expressed Tcr and Kmr in both. A derivative, pMP5, which contained an insertion in the pBD6 component, expressed a higher level of kanomycin resistance and was more easily selected in S. pneumoniae. Another derivative, pMP3, which contained an additional EcoRI fragment, presumably of pneumococcal chromosomal DNA, could not be transferred to B. subtilis. Previous findings that monomeric plasmid forms could transform S. pneumoniae but not B. subtilis were confirmed using single plasmid preparations. Although plasmids extracted from either species were readily transferred to S. pneumoniae, successive passage in B. subtilis increased the ability of plasmid extracts to transfer the plasmid to a B. subtilis recipient. This adaptation was tentatively ascribed to an enrichment of multimeric forms in extracts of B. subtilis as compared to S. pneumoniae. A review of host ranges exhibited by plasmids of Gram-positive bacteria suggested differences in their ability to use particular host replication functions. The pMP5 plasmid, with readily selectable Kmr and Tcr markers in both hosts, and with the potential for inactivation of Kmr by insertion in the Bg/II site, could be a useful shuttle vector for cloning in S. pneumoniae and B. subtilis.  相似文献   

7.
8.
M Fujii  K Sakaguchi 《Gene》1980,12(1-2):95-102
A composite plasmid pLS253 was constructed from pLS103 [carrying the Bacillus subtilis leucine genes on B. subtilis (natto) plasmid pLS28] and pHV14 [a recombinant plasmid composed of pBR322 and the staphylococcal R-plasmid pC194] employing BamHI endonuclease, T4 DNA ligase, and B. subtilis transformation. All the Leu+ Cmr transformants tested harbored not only pLS253 but also two smaller plasmids designated as pLS251 and pLS252. pLS253 DNA, when purified on an agarose gel, retained both Leu+ and Cmr transforming activities; however, in all the Leu+ Cmr transformants, the two smaller plasmids reappeared. pLS251 and pLS252 exhibited Leu+- or Cm4-transforming activity, respectively, and must have been derived from the pLS253 parent by an intramolecular recombination event, since the sum of the pLS251 and pLS252 DNAs represent the entire pLS253 genome. The recombination occurred between specific sites on the B. subtilis (natto) and Staphylococcus aureus plasmids. When the composite plasmid, pLS254, was constructed by BamHI cleavage of pLS251 and pLS252 followed by ligation, Leu+ Cmr transformants segregated two smaller plasmids which were indistinguishable from the original plasmids pLS103 and pHV14, respectively. They must have been derived from pLS254 through a reversal of the original recombination event. No intermolecular recombination between pLS251 and pLS252 DNA was detected. The recombination process was independent of recE function of the host cells, and its mechanism is discussed.  相似文献   

9.
Summary The plasmid pBC16 (4.25 kbases), originally isolated from Bacillus cereus, determines tetracycline resistance and can be transformed into competent cells of B. subtilis. A miniplasmid of pBC16 (pBC16-1), 2,7 kb) which has lost an EcoRI fragment of pBC16 retains the replication functions and the tetracycline resistance. This plasmid which carries only one EcoRI site has been joined in vitro to pBS1, a cryptic plasmid previously isolated from B. subtilis and shown to carry also a single EcoRI site (Bernhard et al., 1978). The recombinant plasmid is unstable and dissociates into the plasmid pBS161 (8.2 kb) and the smaller plasmid pBS162 (2.1 kb). Plasmid pBS161 retains the tetracycline resistance. It possesses a single EcoRI site and 6 HindIII sites. The largest HindIII fragment of pBS161 carries the tetracycline resistance gene and the replication function. After circularization in vitro of this fragment a new plasmid, pBS161-1 is generated, which can be used as a HindIII and EcoRI cloning vector in Bacillus subtilis.Hybrid plasmids consisting of the E. coli plasmids pBR322, pWL7 or pAC184 and different HindIII fragments of pBS161 were constructed in vitro. Hybrids containing together with the E. coli plasmid the largest HindIII fragment of pBS161 can replicate in E. coli and B. subtilis. In E. coli only the replicon of the E. coli plasmid part is functioning whereas in B. subtilis replication of the hybrid plasmid is under the control of the Bacillus replicon. The tetracycline resistance of the B. subtilis plasmid is expressed in E. coli, but several antibiotic resistances of the E. coli plasmids (ampicillin, kanamycin and chloramphenicol) are not expressed in B. subtilis. The hybrid plasmids seem to be more unstable in B. subtilis than in E. coli.  相似文献   

10.
Molecular cloning of EcoRII endonuclease and methylase genes   总被引:9,自引:0,他引:9  
Summary The genes for restriction-modification system EcoRII have been cloned from plasmid N3 DNA using RSF2124 as a vector plasmid. The hybrid plasmids designated pFK321 and pFK322 contained a 5.8 megadaltons EcoRI — fragment derived from N3 DNA including the genes for restriction-modification system EcoRII and a gene for resistance to sulfanilamide.  相似文献   

11.
The use of Bacillus subtilis 168 as the initial host for molecular cloning and subsequent delivery of the engineered DNA to other Bacillus hosts appears attractive, and would lead to an efficient DNA manipulation system. However, methods of delivery to other Bacillus species are limited due to their inability to develop natural competence. An alternative, unexplored conjugational transfer method drew our attention and a B. subtilis native plasmid, pLS30, isolated from B. subtilis (natto) strain IAM1168 was characterized for this aim. The nucleotide sequence (6,610 bp) contained the mob gene and its recognition sequence, oriT, that features pLS30 as a mobile plasmid between Bacillus species on conjugational transfer. Plasmid pLS3001, a chimera with a pBR322-based plasmid prepared in Escherichia coli to confer an antibiotic resistance marker, showed apparent mobilizing activity in the pLS20-mediated conjugational transfer system recently established. The rep gene and associated palT1-like sequence common to all other pLS plasmids previously sequenced indicated that pLS30 is a typical rolling circle replicating (RCR) type plasmid. Due to the significant stability of pLS30 in IAM1168, application of a mobile plasmid would allow quick propagation to Bacillus species.  相似文献   

12.
N K Alton  D Vapnek 《Plasmid》1978,1(3):388-404
A genetic and physical map of Escherichia coli plasmid R538-1 was constructed using restriction endonucleases and molecular cloning techniques. R538-1 DNA was cleaved into 12 fragments by endonuclease · R · EcoRI, 6 fragments by endonuclease R · HindIII, and 3 fragments by endonuclease R · BamHI. The order of these fragments was determined by standard restriction fragment mapping techniques. Endo · R · EcoRI, endo · R · HindIII, endo · R · BamHI, and endo · R · PstI fragments obtained from R538-1 and ColE1-derived plasmids (pMB9, ColE1Apr, and pBR322) were ligated in vitro and used to transform E. coli C600. Transformants were selected for antibiotic resistance markers carried by R538-1. Analysis of the R538-1 fragments contained in these hybrid plasmids permitted the construction of a genetic map of the R538-1 plasmid. The genetic map of this plasmid is very similar to that of plasmid R100.  相似文献   

13.
The region of R plasmid NR1 that is capable of mediating autonomous replication was cloned by using EcoRI, SalI, and PstI restriction endonucleases. The only EcoRI fragment capable of mediating autonomous replication in either a pol+ or a polA host was fragment B. SalI fragment E joined in native orientation with the part of SalI fragment C that overlapped with EcoRI fragment B, and also two contiguous PstI fragments of sizes 1.6 and 1.1 kilobases from EcoRI fragment B-mediated autonomous replication. When these individual SalI fragments were cloned onto plasmid pBR313 or the individual PstI fragments were cloned onto plasmid pBR322, none of these single fragments could rescue the replication of the ColE1-like vectors in a polA host, even in the presence of a compatible "helper" plasmid derived from a copy mutant of NR1. In contrast to the results reported for closely related R plasmid R6, EcoRI fragment A of NR1 could not rescue the replication of ColE1 derivative RSF2124 in a polA(Am) mutant or in a polA(Ts) mutant at the restrictive temperature. Although capable of autonomous replication, EcoRI fragment B of NR1 (or smaller replicator fragments cloned from it by using other restriction enzymes) was not stably inherited in the absence of selection for the recombinant plasmid. When EcoRI fragment B was ligated to EcoRI fragment A of NR1, the recombinant plasmid was stable. Thus, EcoRI fragment A contained a stability (stb) function. The stb function did not act in trans since EcoRI fragment B was not stably inherited when a ColE1 derivative (RSF2124) ligated to EcoRI fragment A was present in the same cell. A cointegrate plasmid consisting of EcoRI fragment B of NR1 ligated to RSF2124 was also not stably inherited, whereas only EcoRI fragment B was unstable when both RSF2124 and EcoRI fragment B coexisted as autonomous plasmids in the same cell. The incompatibility gene of NR1 was shown to be located within the region of overlap between SalI fragment E and the PstI 1.1-kilobase fragment. A copy mutant of NR1 (called pRR12) was found to have greatly reduced incompatibility with NR1; this Inc- phenotype is cis dominant.  相似文献   

14.
Plasmid DNA of molecular weight 6.8 × 106 was isolated from Streptomyces kasugaensis MB273. The plasmid DNA showed a single CsCl-ethidium bromide density gradient centrifugation, in neutral sucrose gradient centrifugation, and in agarose gel electrophoresis. When this DNA was digested with BamHI or SalI endonucleases, an unexpected number of fragments were found on agarose gel electrophoresis. Molecular weight summation of fragments obtained from double restriction enzyme digestions suggested that the plasmid DNA was a mixture of two different plasmids. This was confirmed by constructing recombinant plasmids between S. kasugaensis plasmid DNA and pBR322, and then by isolating two plasmids after SalI endonuclease treatment followed by sucrose gradient centrifugation. One of the plasmids (pSK1) had a single recognition site for BamHI, EcoRI, and SalI, and three sites for BglII. The other plasmid (pSK2) had a single recognition site for EcoRI and BglII, two recognition sites for BamHI, and no cleavage site for SalI. The cleavage maps of these plasmids were constructed using several restriction endonucleases.  相似文献   

15.
The cyclomaltodextrinase gene fromBacillus subtilis high-temperature growth transformant H-17 was cloned on separatePstI,BamHI, andEcoRI fragments into the plasmid vector pUC18, but was expressed in an inactive form in the host,Escherichia coli DH5. High level constitutive expression of the gene product was also detrimental to theE. coli host, which led to structural instability of the recombinant plasmid. The cyclomaltodextrinase gene was cloned on a 3-kbEcoRI fragment into the plasmid vector pPL708, and the fragment was structurally maintained in the hostB. subtilis YB886. The cloned gene product was synthesized in an enzymatically active form in theB. subtilis host; however, expression was at a low level. Subcloning of the 3-kbEcoRI fragment into pUC18 and transformation intoE. coli XL1-Blue (FlacIq) indicated that the cyclomaltodextrinase gene was cloned with its own promoter, since expression of the gene occurred in the absence of IPTG. Subcloning of the cyclomaltodextrinase gene downstream from theBacillus temperate phage SPO2 promoter of pPL708 may increase expression of this gene.Florida Agricultural Experiment Station Journal Series No. R-02177  相似文献   

16.
Tsuge K  Itaya M 《Journal of bacteriology》2001,183(18):5453-5458
Transformation of Bacillus subtilis by a plasmid requires a circular multimeric form. In contrast, linearized plasmids can be circularized only when homologous sequences are present in the host genome. A recombinational transfer system was constructed with this intrinsic B. subtilis recombinational repair pathway. The vector, pGETS103, a derivative of the theta-type replicating plasmid pTB19 of thermophilic Bacillus, had the full length of Escherichia coli plasmid pBR322. A multimeric form of pGETS103 yielded tetracycline-resistant transformants of B. subtilis. In contrast, linearized pGETS103 gave tetracycline-resistant transformants only when the recipient strain had the pBR322 sequence in the genome. The efficiency and fidelity of the recombinational transfer of DNAs of up to 90 kb are demonstrated.  相似文献   

17.
A 1.4-megadalton EcoRI restriction fragment carrying Bacillus subtilis sporulation gene spo0B was cloned from the specialized transducing phage, φ 105spo0B, into a unique EcoRI site of plasmid vector pUB110, and four plasmids having a deletion in the 1.4-megadalton EcoRI fragment were constructed. Analysis of the polypeptides synthesized in B. subtilis minicells harboring these plasmids and the sporulation ability of strain UOT0436 (spo0B136 recE4) harboring these plasmids showed that the spo0B gene product is a polypeptide of 24,000 daltons. Two-dimensional polyacrylamide gel analysis showed that the isoelectric point of this protein is almost neutral.  相似文献   

18.
A restriction fragment library containing Autographa californica nuclear polyhedrosis virus (AcNPV) DNA was constructed by using the pBR322 plasmid as a vector. The library, which is representative of more than 95% of the viral genome, consists of 2 of the 7 BamHI fragments, 12 of the 24 HindIII fragments, and 23 of the 24 EcoRI fragments. The cloned fragments were characterized and used to generate physical maps of the genome by hybridizing nick-translated recombinant plasmid to Southern blots of AcNPV DNA digested with SmaI, BamHI, XhoI, PstI, HindIII, and EcoRI restriction endonucleases. This information was used to define our strain of AcNPV (HR3) with respect to other strains for which physical maps have been previously published. The hybridization data also indicate that reiteration of DNA sequences occurs at the HindIII-L and -Q regions of the genome.  相似文献   

19.
The srnB+ gene, promoting stable RNA degradation at 42 C in the presence of rifampin, was cloned by using pBR322 as a vector; it was located on a 1.1-kilobase (kb) EcoRI/BamHI fragment between 1.4 and 2.5 kb of the F plasmid. The region between 93.3 and 4.0 kb of the F plasmid was physically mapped by using restriction endonucleases EcoRI, HindIII, BamHI, PstI, and SmaI, with reference to a standard HindIII site in IS3. An srnB1 mutant was isolated from a chimeric plasmid, pOY54, after treatment of its DNA with hydroxylamine. The srnB1 allele on the F fragment of the mutant plasmid was recessive to the wild-type allele. Thermal elevation of cell cultures to 39 C was high enough to promote RNA degradation in strain YS12 carrying plasmid pOY54.  相似文献   

20.
Summary A collection of about 2500 clones containing hybrid plasmids representative of nearly the entire genome of B. subtilis 168 was established in E. coli SK1592 by using the poly(dA)·poly(dT) joining method with randomly sheared DNA fragments and plasmid pHV33, a bifunctional vector which can replicate in both E. coli and B. subtilis. Detection of cloned recombinant DNA molecules was based on the insertional inactivation of the Tc gene occurring at the unique BamHI cleavage site present in the vector plasmid.Thirty individual clones of the collection were shown to hybridize specifically with a B. subtilis rRNA probe. CCC-recombinant plasmids extracted from E. coli were pooled in lots of 100 and used to transform auxotrophic mutants of B. subtilis 168. Complementation of these auxotrophic mutations was observed for several markers such as thr, leuA, hisA, glyB and purB. In several cases, markers carried by the recombinant plasmids were lost from the plasmid and integrated into the chromosomal DNA. Loss of genetic markers from the hybrid plasmids did not occur when a rec - recipient strain of B. subtilis was used.Abbreviations ApR resistance to ampicillin - TcR resistance to tetracycline - CmR resistance to chloramphenicol - CCC covalently closed circular duplex - Mdal magadalton  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号