首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the effects of chronic stress and lithium treatments on oxidative stress parameters in hippocampus, hypothalamus, and frontal cortex. Adult male Wistar rats were divided into two groups: control and submitted to chronic variate stress, and subdivided into treated or not with LiCl. After 40 days, rats were killed, and lipoperoxidation, production free radicals, total antioxidant reactivity (TAR) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were evaluated. The results showed that stress increased lipoperoxidation and that lithium decreased free radicals production in hippocampus; both treatments increased TAR. In hypothalamus, lithium increased TAR and no effect was observed in the frontal cortex. Stress increased SOD activity in hippocampus; while lithium increased GPx in hippocampus and SOD in hypothalamus. We concluded that lithium presented antioxidant properties, but is not able to prevent oxidative damage induced by chronic variate stress.  相似文献   

2.
Neurochemical gender-specific effects have been observed following chronic stress. The aim of this study was to verify the effects of chronic variable stress on free radical production (evaluated by DCF test), lipoperoxidation (evaluated by TBARS levels), and total antioxidant reactivity (TAR) in three distinct structures of brain: hippocampus, cerebral cortex and hypothalamus of female rats, and to evaluate whether the replacement with estradiol in female rats exerts neuroprotection against oxidative stress. Results demonstrate that chronic stress had a structure-specific effect upon lipid peroxidation, since TBARS increased in hypothalamus homogenates of stressed animals, without alterations in the other structures analyzed. Estradiol replacement was able to counteract this effect. In hippocampus, estradiol induced a significant increase in TAR. No differences in DCF levels were observed. In conclusion, the hypothalamus is more susceptible to oxidative stress in female rats submitted to chronic variable stress, and this effect is prevented by estradiol treatment.  相似文献   

3.
Aluminum (Al)-induced pro-oxidant activity and the protective role of exogenous melatonin, as well as the mRNA levels of some antioxidant enzymes, were determined in the hippocampi of rats following administration of Al and/or melatonin. Two groups of male rats were intraperitoneally injected with Al (as Al lactate) or melatonin only, at doses of 7 and 10 mg/kg/day, respectively, for 11 weeks. During this period, a third group of animals received Al (7 mg/kg/day) plus melatonin (10 mg/kg/day). At the end of the treatment, hippocampus was removed and processed to examine the following oxidative stress markers: glutathione transferase (GST), reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), thiobarbituric acid reactive substances (TBARS), as well as protein content. Gene expression of Cu-ZnSOD, MnSOD, GPx, and CAT was evaluated by real-time RT-PCR. On the other hand, Al, Fe, Mn, Cu, and Zn concentrations in hippocampus were also determined. The results show that Al exposure promotes oxidative stress in the rat hippocampus, with an increase in Al concentrations. The biochemical changes observed in this tissue indicate that Al acts as pro-oxidant agent, while melatonin exerts antioxidant action by increasing the mRNA levels of the antioxidant enzymes evaluated. The protective effects of melatonin, together with its low toxicity and its capacity to increase mRNA levels of antioxidant enzymes, suggest that this hormone might be administered as a potential supplement in the treatment of neurological disorders in which oxidative stress is involved.  相似文献   

4.
Behavioral and neurochemical gender-specific effects have been observed following repeated stress. The aim of this study is to verify the effects of repeated restraint stress on free radical production (evaluated by DCF test), lipoperoxidation (evaluated by TBARS levels), and total antioxidant reactivity (TAR) in the spinal cord of male and female rats. Results demonstrate no effect on lipoperoxidation; chronic stress decreased TAR both in male and female spinal cord. In addition, gender differences were observed both in TAR and in the production of free radicals, both being increased in females. These results may be relevant to the gender-specific differences observed after exposure to repeated stress.  相似文献   

5.
1. Glutaric acidemia type I (GA I) is a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase, which leads to tissue accumulation of predominantly glutaric acid (GA) and also 3-hydroxyglutaric acid to a lesser amount. Affected patients usually present progressive cortical atrophy and acute striatal degeneration attributed to the toxic accumulating metabolites. 2. In the present study, we determined a number of oxidative stress parameters, namely chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total antioxidant reactivity (TAR), glutathione (GSH) levels, and the activities of catalase and glutathione peroxidase (GPx), in various tissues from rats chronically exposed to GA or to saline (controls). High GA concentrations, similar to those found in glutaric aciduria type I, were induced in the brain by three daily subcutaneous injections of saline-buffered GA (5 μmol/g body weight) to Wistar rats of 5–22 days of life. The parameters were assessed 12 h after the last GA administration in different brain structures, skeletal muscle, heart, liver, erythrocytes, and plasma. The lipid peroxidation parameters chemiluminescence and/or TBA-RS measurements were found significantly increased in midbrain, liver, and erythrocytes of GA-injected rats. The activity of GPx was significantly reduced in midbrain and markedly increased in liver. TAR measurement was significantly reduced in midbrain and liver. Furthermore, GSH levels were reduced in liver and heart. We also investigated the acute in vivo effect of GA administration on the same oxidative stress parameters in cerebral structures and erythrocytes from 22-day-old rats. We found that TBA-RS values were significantly increased in erythrocytes, TAR levels were markedly decreased in midbrain and cerebellum, and GPx activity mildly reduced in the midbrain. 3. These data showing an imbalance between antioxidant defences and oxidative damage, particularly in midbrain, liver, and erythrocytes from GA-injected rats, indicate that oxidative stress might be involved in GA toxicity and that the midbrain, where the striatum is located, is the brain structure more susceptible to GA chronic and acute exposition.  相似文献   

6.
Selenium (Se) is an essential mineral for mammals. It is a nutrient related to the complex metabolic and enzymatic functions. Although Se has important physiological functions in the cells, organic compounds of Se can be extremely toxic, and may affect the central nervous system. This study aims to investigate the effect of the chronic treatment with the vinyl chalcogenide 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on some parameters of oxidative stress in the brain of rats. Animals received the vinyl chalcogenide (125, 250 or 500 μg/kg body weight) intraperitoneally once a day during 30 days. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured in the brain. Results showed that the organoselenium enhanced TBARS in the cerebral cortex of rats but the compound was not able to change carbonyl levels. Furthermore, the organoselenium reduced thiol groups measured by the sulfhydryl assay in all tissues studied. The activity of the antioxidant enzyme CAT was increased by the organochalcogen in the cerebral cortex and in the cerebellum, and the activity of SOD was increased in the hippocampus. On the other hand, the activity of the antioxidant enzyme GPx was reduced in all brain structures. Our findings indicate that this organoselenium compound induces oxidative stress in different brain regions of rats, corroborating to the fact that this tissue is a potential target for organochalcogen action.  相似文献   

7.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

8.
We previously showed that total sleep deprivation increased antioxidant responses in several rat brain regions. We also reported that chronic hypoxia enhanced antioxidant responses and increased oxidative stress in rat cerebellum and pons, relative to normoxic conditions. In the current study, we examined the interaction between these two parameters (sleep and hypoxia). We exposed rats to total sleep deprivation under sustained hypoxia (SDSH) and compared changes in antioxidant responses and oxidative stress markers in the neocortex, hippocampus, brainstem, and cerebellum to those in control animals left undisturbed under either sustained hypoxia (UCSH) or normoxia (UCN). We measured changes in total nitrite levels as an indicator of nitric oxide (NO) production, superoxide dismutase (SOD) activity and total glutathione (GSHt) levels as markers of antioxidant responses, and levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyls as signs of lipid and protein oxidation products, respectively. We found that acute (6h) SDSH increased NO production in the hippocampus and increased GSHt levels in the neocortex, brainstem, and cerebellum while decreasing hippocampal lipid oxidation. Additionally, we observed increased hexokinase activity in the neocortex of SDSH rats compared to UCSH rats, suggesting that elevated glucose metabolism may be one potential source of the enhanced free radicals produced in this brain region. We conclude that short-term insomnia under hypoxia may serve as an adaptive response to prevent oxidative stress.  相似文献   

9.
In a previous study we demonstrated that acute footshock stress increased glutathione peroxidase activity in the prefrontal cortex and striatum of adult male rats. Adolescents may respond differently to stress as life stressors may be greater than at other ages. The present study examined the effects of the acute footshock stress on superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities and thiobarbituric acid reactive substances (TBARS) levels in adolescent male and female rat brains. We demonstrated that acute footshock stress increased SOD activity in the prefrontal cortex, and increased GPx activity in the hippocampus in female rats. In males, acute footshock stress increased GPx activity in the prefrontal cortex and hippocampus. Footshock stress did not change TBARS levels. These results indicate a strong role of gender in the response of adolescent subjects to various aspects of stress.  相似文献   

10.
Homocystinuria is a neurometabolic disease caused by severe deficiency of cystathionine beta-synthase activity, resulting in severe hyperhomocysteinemia. Affected patients present several symptoms including a variable degree of motor dysfunction, being that the pathomechanism is not fully understood. In the present study we investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative stress, namely 2′7′dichlorofluorescein (DCFH) oxidation, levels of thiobarbituric acid-reactive substances (TBARS), antioxidant enzyme activities (SOD, CAT and GPx), reduced glutathione (GSH), total sulfhydryl and carbonyl content, as well as nitrite levels in soleus skeletal muscle of young rats subjected to model of severe hyperhomocysteinemia. We also evaluated the effect of creatine on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injection of homocysteine (0.3–0.6 μmol/g body weight), and/or creatine (50 mg/kg body weight) from their 6th to the 28th days age. Controls and treated rats were decapitated at 12 h after the last injection. Chronic homocysteine administration increased 2′7′dichlorofluorescein (DCFH) oxidation, an index of production of reactive species and TBARS levels, an index of lipoperoxidation. Antioxidant enzyme activities, such as SOD and CAT were also increased, but GPx activity was not altered. The content of GSH, sulfhydril and carbonyl were decreased, as well as levels of nitrite. Creatine concurrent administration prevented some homocysteine effects probably by its antioxidant properties. Our data suggest that the oxidative insult elicited by chronic hyperhomocystenemia may provide insights into the mechanisms by which homocysteine exerts its effects on skeletal muscle function. Creatine prevents some alterations caused by homocysteine.  相似文献   

11.
The aging process is associated with cognitive impairment and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, as well as with oxidative stress. We determined some parameters of oxidative stress in homogenates of hippocampus, hypothalamus and adrenal glands from male 2-, 6- and 24-months-old Wistar rats. A significant age-dependent increase in the generation of free radicals was observed in hippocampus, hypothalamus and adrenal glands, as well as on lipid peroxidation in hippocampus and hypothalamus. The glutathione peroxidase (GPx) activity was significantly reduced in hypothalamus and hippocampus from 6-months-old rats; a decline on GPx and catalase activities in adrenal glands of 24-months-old animals was also present. Interestingly, a great decrease in total antioxidant capacity was found in all tissues tested. Reported findings support the idea that oxidative events participate on multiple neuroendocrine-metabolic impairments and suggest that the oxidative stress found in hippocampus, hypothalamus and adrenals might be associated with age-related physiological deficits.  相似文献   

12.
《Free radical research》2013,47(9):1076-1081
Abstract

Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

13.
Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

14.
Antioxidant responses to chronic hypoxia in the rat cerebellum and pons   总被引:6,自引:0,他引:6  
Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH) and sleep fragmentation and deprivation. Exposure to CIH results in oxidative stress in the cortex, hippocampus and basal forebrain of rats and mice. We show that sustained and intermittent hypoxia induces antioxidant responses, an indicator of oxidative stress, in the rat cerebellum and pons. Increased glutathione reductase (GR) activity and thiobarbituric acid reactive substance (TBARS) levels were observed in the pons and cerebellum of rats exposed to CIH or chronic sustained hypoxia (CSH) compared with room air (RA) controls. Exposure to CIH or CSH increased GR activity in the pons, while exposure to CSH increased the level of TBARS in the cerebellum. The level of TBARS was increased to a greater extent after exposure to CSH than to CIH in the cerebellum and pons. Increased superoxide dismutase activity (SOD) and decreased total glutathione (GSHt) levels were observed after exposure to CIH compared with CSH only in the pons. We have previously shown that prolonged sleep deprivation decreased SOD activity in the rat hippocampus and brainstem, without affecting the cerebellum, cortex or hypothalamus. We therefore conclude that sleep deprivation and hypoxia differentially affect antioxidant responses in different brain regions.  相似文献   

15.
Previous studies have shown sex-specific oxidative changes in spinal cord of rats submitted to chronic stress, which may be due to gonadal hormones. Here, we assessed total radical-trapping potential (TRAP), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and lipid peroxidation (evaluated by the TBARS test) in the spinal cord of ovariectomized (OVX) female rats. Female rats were subjected to OVX, and half of the animals received estradiol replacement. Animals were subdivided into controls and chronically stressed (for 40 days). Our findings demonstrate that chronic stress decreased TRAP, and increased SOD activity in spinal cord homogenates from ovariectomized female rats and had no effect on GPx activity. On the other hand, groups receiving 17β-estradiol replacement presented a decreased GPx activity, but no alteration in TRAP and in SOD activity. No differences in the TBARS test were found in any of the groups analyzed. In conclusion, our results support the idea that chronic stress induces an imbalance between SOD and GPx activities, additionally decreasing TRAP. Estradiol replacement did not reverse the effects of chronic stress, but induced a decrease in GPx activity. Therefore, estradiol replacement in ovariectomized chronically stressed rats could make the spinal cord more susceptible to oxidative injury.  相似文献   

16.
X-linked adrenoleukodystrophy (X-ALD) is a hereditary disorder of peroxisomal metabolism biochemically characterized by the accumulation of very long chain fatty acids (VLCFA), particularly hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in different tissues and in biological fluids. The disease is clinically characterized by central and peripheral demyelination and adrenal insufficiency, which is closely related to the increased concentrations of these fatty acids. However, the mechanisms underlying the brain damage in X-ALD are poorly known. Considering that free radical generation is involved in various neurodegenerative disorders, like Parkinson disease, multiple sclerosis and Alzheimer's disease, in the present study we evaluated various oxidative stress parameters, namely chemiluminescence, thiobarbituric acid reactive species (TBA-RS), total radical-trapping antioxidant potential (TRAP), and total antioxidant reactivity (TAR) in plasma of X-ALD patients, as well as the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes and fibroblasts from these patients. It was verified a significant increase of plasma chemiluminescence and TBA-RS, reflecting induction of lipid peroxidation, as well as a decrease of plasma TAR, indicating a deficient capacity to rapidly handle an increase of reactive species. We also observed a significant increase of erythrocytes GPx activity and of catalase and SOD activities in fibroblasts from the patients studied. It is therefore proposed that oxidative stress may be involved in pathophysiology of X-ALD.  相似文献   

17.
The effects of hypoxia exposure and subsequent normoxic recovery on the levels of lipid peroxides (LOOH), thiobarbituric acid reactive substances (TBARS), carbonylproteins, total glutathione levels, and the activities of six antioxidant enzymes were measured in brain, liver, kidney and skeletal muscle of the common carp Cyprinus carpio. Hypoxia exposure (25% of normal oxygen level) for 5h generally decreased the levels of oxidative damage products, but in liver TBARS content were elevated. Hypoxia stimulated increases in the activities of catalase (by 1.7-fold) and glutathione peroxidase (GPx) (by 1.3-fold) in brain supporting the idea that anticipatory preparation takes place in order to deal with the oxidative stress that will occur during reoxygenation. In liver, only GPx activity was reduced under hypoxia and reoxygenation while other enzymes were unaffected. Kidney showed decreased activity of GPx under aerobic recovery but superoxide dismutase (SOD) and catalase responded with sharp increases in activities. Skeletal muscle showed minor changes with a reduction in GPx activity under hypoxia exposure and an increase in SOD activity under recovery. Responses by antioxidant defenses in carp organs appear to include preparatory increases during hypoxia by some antioxidant enzymes in brain but a more direct response to oxidative insult during recovery appears to trigger enzyme responses in kidney and skeletal muscle.  相似文献   

18.
Melatonin has recently been suggested as an antioxidant that may protect neurons from oxidative stress. Acute ethanol administration produces both lipid peroxidation as an indicator of oxidative stress in the brain and impairs water-maze performance in spatial learning and memory tasks. The present study investigated the effect of melatonin against ethanol-induced oxidative stress and spatial memory impairment. The Morris water maze was used to evaluate the cognitive functions of rats. Thiobarbituric acid reactive substances (TBARS), which are the indicators of lipid peroxidation, and the activities of antioxidative enzymes (glutathione peroxidase and superoxide dismutase) were measured in the rat hippocampus and prefrontal cortex which form interconnected neural circuits for spatial memory. Acute administration of ethanol significantly increased TBARS levels in the hippocampus. Combined melatonin-ethanol treatment caused a significant increase in glutathione peroxidase activities and a significant decrease of TBARS in the rat hippocampus. In the prefrontal cortex, there was only a significant decrease of TBARS levels in the combined melatonin-ethanol receiving group as compared to the ethanol-treated group. Melatonin did not affect the impairment of spatial memory due to acute ethanol exposure, but melatonin alone had a positive effect on water maze performances. Our study demonstrated that melatonin decreased ethanol-induced lipid peroxidation and increased glutathione peroxidase activity in the rat hippocampus.  相似文献   

19.
To compare the effects of alpha-ketoglutarate (alpha-KG) and melatonin on 24-h rhythmicity of oxidative stress in N-nitrosodiethylamine (NDEA)-injected Wistar male rats, melatonin (5 mg/kg i.p.) or alpha-KG (2 g/kg through an intragastric tube) was given daily for 20 weeks. In blood collected at 6 time points during a 24-h period, serum activity of aspartate transaminase (AST) and alanine transaminase (ALT) and the levels of alpha-fetoprotein (alpha-FP) were measured as markers of liver function. To assess lipid peroxidation and the antioxidant status, plasma levels of thiobarbituric acid reactive substances (TBARS) and of reduced glutathione (GSH) were measured, together with the activity of erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST). NDEA augmented mesor and amplitude of rhythms in AST and ALT activity and plasma alpha-FP levels and mesor values of plasma TBARS, while decreasing mesor values of plasma GSH and erythrocyte SOD, CAT, GPx and GST. Acrophases were delayed by NDEA in all cases except for alpha-FP rhythm, which became phase-advanced. Co-administration of melatonin or alpha-KG partially counteracted the effects of NDEA. Melatonin decreased mesor of plasma TBARS and augmented mesor of SOD activity. The results indicate that melatonin and alpha-KG are effective in protecting from NDEA-induced perturbation of 24-h rhythms in oxidative stress. Melatonin augmented antioxidant defense in rats.  相似文献   

20.
Hypobaric hypoxia induces oxidative stress in rat brain   总被引:7,自引:0,他引:7  
High altitude exposure results in decreased partial pressure of oxygen and an increased formation of reactive oxygen and nitrogen species (RONS), which causes oxidative damage to lipids, proteins and DNA. Exposure to high altitude appears to decrease the activity and effectiveness of antioxidant enzyme system. The antioxidant system is very less in brain tissue and is very much susceptible to hypoxic stress. The aim of the present study was to investigate the time dependent and region specific changes in cortex, hippocampus and striatum on oxidative stress markers on chronic exposure to hypobaric hypoxia. The rats were exposed to simulated high altitude equivalent to 6100 m in animal decompression chamber for 3 and 7 days. Results indicate an increase in oxidative stress as seen by increase in free radical production, nitric oxide level, lipid peroxidation and lactate dehydrogenase levels. The magnitude of increase in oxidative stress was more in 7 days exposure group as compared to 3 days exposure group. The antioxidant defence system such as reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and reduced/oxidized glutathione (GSH/GSSG) levels were significantly decreased in all the three regions. The observation suggests that the hippocampus is more susceptible to hypoxia than the cortex and striatum. It may be concluded that hypoxia differentially affects the antioxidant status in the cortex, hippocampus and striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号