首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Construction of an adenovirus type 7a E1A- vector.   总被引:2,自引:0,他引:2       下载免费PDF全文
A strategy for constructing replication-defective adenovirus vectors from non-subgroup C viruses has been successfully demonstrated with adenovirus type 7 strain a (Ad7a) as the prototype. An E1A-deleted Ad7a reporter virus expressing the chloramphenicol acetyltransferase (CAT) gene from the cytomegalovirus promoter enhancer was constructed with DNA fragments isolated from Ad7a, an Ad7a recombination reporter plasmid, and the 293 cell line. The Ad7a-CAT virus particle transduces A549 cells as efficiently as Ad5-based vectors. Intravenous infections in a murine model indicate that the Ad7a-CAT virus infects a variety of tissues, with maximal levels of CAT gene expression found in the liver. The duration of Ad7a-CAT transgene expression in the liver was maximally maintained 2 weeks postinfection, with a decline to baseline activity by the week 4 postinfection. Ad7a-CAT represents the first example of a non-subgroup C E1A- adenovirus gene transfer vector.  相似文献   

2.
H Zhou  W O'Neal  N Morral    A L Beaudet 《Journal of virology》1996,70(10):7030-7038
Although adenovirus vectors offer many advantages, it would be desirable to develop vectors with improved expression and decreased toxicity. Toward this objective, an adenovirus vector system with deletion of both the El and E2a regions was developed. A 5.9-kb fragment of the adenovirus type 5 (Ad5) genome containing the E2a gene and its early and late promoters was transfected into 293 cells. A complementing cell line, designated 293-C2, expressed the E2a mRNA and protein and was found to complement the defect in Ad5 viruses with temperature-sensitive or deletion mutations in E2a. A deletion of 1.3 kb removing codons 40 to 471 of the 529 amino acids of E2a was introduced into plasmids for preparation of viruses and vectors. An Ad5 virus with disruption of the El gene and deletion of E2a grew on 293-C2 cells but not on 293 cells. Vectors with E1 and E2a deleted expressing Escherichia coli beta-galactosidase or human alpha1-antitrypsin were prepared and expressed the reporter genes after intravenous injection into mice. This vector system retains sequences in common between the complementing cell line and the vectors, including 3.4 kb upstream and 1.1 kb downstream of the deletion. These vectors have potential advantages of increased capacity for insertion of transgene sequences, elimination of expression of E2a, and possibly reduction in expression of other viral proteins. Although the titers of the vectors with deleted are about 10- to 30-fold below those of vectors with E2a wild-type regions, the former vectors are suitable for detailed studies with animals to evaluate the effects on host immune responses, on duration of expression, and on safety.  相似文献   

3.
Toxicity and immunity associated with adenovirus backbone gene expression is an important hurdle to overcome for successful gene therapy. Recent efforts to improve adenovirus vectors for in vivo use have focused on the sequential deletion of essential early genes. Adenovirus vectors have been constructed with the E1 gene deleted and with this deletion in combination with an E2a, E2b, or E4 deletion. We report here a novel vector (Av4orf3nBg) lacking E1, E2a, and all of E4 except open reading frame 3 (ORF3) and expressing a beta-galactosidase reporter gene. This vector was generated by transfection of a plasmid carrying the full-length vector sequence into A30.S8 cells that express E1 and E2a but not E4. Production was subsequently performed in an E1-, E2a-, and E4-complementing cell line. We demonstrated with C57BL/6 mice that the Av4orf3nBg vector effected gene transfer with an efficiency comparable to that of the Av3nBg (wild-type E4) vector but that the former exhibited a higher level of beta-galactosidase expression. This observation suggests that E4 ORF3 alone is able to enhance RNA levels from the beta-galactosidase gene when the Rous sarcoma virus promoter is used to drive transgene expression in the mouse liver. In addition, we observed less liver toxicity in mice injected with the Av4orf3nBg vector than those injected with the Av3nBg vector at a comparable DNA copy number per cell. This study suggests that the additional deletion of E4 in an E1 and E2a deletion background may be beneficial in decreasing immunogenicity and improving safety and toxicity profiles, as well as increasing transgene capacity and expression for liver-directed gene therapy.  相似文献   

4.
A novel recombinant adenovirus vector, Av3nBg, was constructed with deletions in adenovirus E1, E2a, and E3 regions and expressing a beta-galactosidase reporter gene. Av3nBg can be propagated at a high titer in a corresponding A549-derived cell line, AE1-2a, which contains the adenovirus E1 and E2a region genes inducibly expressed from separate glucocorticoid-responsive promoters. Av3nBg demonstrated gene transfer and expression comparable to that of Av1nBg, a first-generation adenovirus vector with deletions in E1 and E3. Several lines of evidence suggest that this vector is significantly more attenuated than E1 and E3 deletion vectors. Metabolic DNA labeling studies showed no detectable de novo vector DNA synthesis or accumulation, and metabolic protein labeling demonstrated no detectable de novo hexon protein synthesis for Av3nBg in naive A549 cells even at a multiplicity of infection of up to 3,000 PFU per cell. Additionally, naive A549 cells infected by Av3nBg did not accumulate infectious virions. In contrast, both Av1nBg and Av2Lu vectors showed DNA replication and hexon protein synthesis at multiplicities of infection of 500 PFU per cell. Av2Lu has a deletion in E1 and also carries a temperature-sensitive mutation in E2a. Thus, molecular characterization has demonstrated that the Av3nBg vector is improved with respect to the potential for vector DNA replication and hexon protein expression compared with both first-generation (Av1nBg) and second-generation (Av2Lu) adenoviral vectors. These observations may have important implications for potential use of adenovirus vectors in human gene therapy.  相似文献   

5.
The improvements to adenovirus necessary for an optimal gene transfer vector include the removal of virus gene expression in transduced cells, increased transgene capacity, complete replication incompetence, and elimination of replication-competent virus that can be produced during the growth of first-generation adenovirus vectors. To achieve these aims, we have developed a vector-cell line system for complete functional complementation of both adenovirus early region 1 (E1) and E4. A library of cell lines that efficiently complement both E1 and E4 was constructed by transforming 293 cells with an inducible E4-ORF6 expression cassette. These 293-ORF6 cell lines were used to construct and propagate viruses with E1 and E4 deleted. While the construction and propagation of AdRSV beta gal.11 (an E1-/E4- vector engineered to contain a deletion of the entire E4 coding region) were possible in 293-ORF6 cells, the yield of purified virus was depressed approximately 30-fold compared with that of E1- vectors. The debilitation in AdRSV beta gal.11 vector growth was found to correlate with reduced fiber protein and mRNA accumulation. AdCFTR.11A, a modified E1-/E4- vector with a spacer sequence placed between late region 5 and the right inverted terminal repeat, efficiently expressed fiber and grew with the same kinetic profile and virus yield as did E1- vectors. Moreover, purified AdCFTR.11A yields were equivalent to E1- vector levels. Since no overlapping sequences exist in the E4 regions of E1-/E4- vectors and 293-ORF6 cell lines, replication-competent virus cannot be generated by homologous recombination. In addition, these second-generation E1-/E4- vectors have increased transgene capacity and have been rendered virus replication incompetent outside of the new complementing cell lines.  相似文献   

6.
The utility of adenovirus vectors for gene therapy is limited by the transience of expression that has been observed in various in vivo models. Immunological responses to viral targets can eliminate transduced cells and cause the loss of transgene expression. We previously described the characterization of an E4 modified adenovirus, Ad2E4ORF6, which is replication defective in cotton rats. We reasoned that gene transfer vectors based on Ad2E4ORF6 would have a reduced potential for viral gene expression in vivo which might be beneficial for achieving persistence of transgene expression. E1 replacement vectors expressing the cystic fibrosis transmembrane regulator or beta-galactosidase were constructed as series of vectors that differed with respect to the E4 region. Vectors containing a wild-type E4 region, E4 open reading frame 6, or a complete E4 deletion were compared in the lungs of BALB/c mice for persistence of expression. Results obtained with nude mice indicate that nonimmunological factors have a major influence on the longevity of transgene expression. Expression was transient from the E1a promoter with all vectors but persisted from the cytomegalovirus promoter only with a vector containing a wild-type E4 region. Transience of expression did not correlate with the disappearance of vector DNA, suggesting that promoter down-regulation may be involved. Coinfection studies indicate an E4 product(s) could be supplied in trans to allow persistent expression from the cytomegalovirus promoter. In summary, the choice of promoter is important for achieving persistence of expression; in addition, some promoters are highly influenced by the context of the vector backbone.  相似文献   

7.
Adenoviruses bearing lesions in the E1B 55-kDa protein (E1B 55-kDa) gene are restricted by the cell cycle such that mutant virus growth is most impaired in cells infected during G(1) and least restricted in cells infected during S phase (F. D. Goodrum and D. A. Ornelles, J. Virol. 71:548-561, 1997). A similar defect is reported here for E4 orf6-mutant viruses. An E4 orf3-mutant virus was not restricted for growth by the cell cycle. However, orf3 was required for enhanced growth of an E4 orf6-mutant virus in cells infected during S phase. The cell cycle restriction may be linked to virus-mediated mRNA transport because both E1B 55-kDa- and E4 orf6-mutant viruses are defective at regulating mRNA transport at late times of infection. Accordingly, the cytoplasmic-to-nuclear ratio of late viral mRNA was reduced in G(1) cells infected with the mutant viruses compared to that in G(1) cells infected with the wild-type virus. By contrast, this ratio was equivalent among cells infected during S phase with the wild-type or mutant viruses. Furthermore, cells infected during S phase with the E1B 55-kDa- or E4 orf6-mutant viruses synthesized more late viral protein than did cells infected during G(1). However, the total amount of cytoplasmic late viral mRNA was greater in cells infected during G(1) than in cells infected during S phase with either the wild-type or mutant viruses, indicating that enhanced transport of viral mRNA in cells infected during S phase cannot account for the difference in yields in cells infected during S phase and in cells infected during G(1). Thus, additional factors affect the cell cycle restriction. These results indicate that the E4 orf6 and orf3 proteins, in addition to the E1B 55-kDa protein, may cooperate to promote cell cycle-independent adenovirus growth.  相似文献   

8.
We have compared the in vitro and in vivo behaviors of a set of isogenic E1- and E1/E4-defective adenoviruses expressing the lacZ gene of Escherichia coli from the Rous sarcoma virus long terminal repeat. Infection of tumor-derived established cell lines of human origin with the doubly defective adenoviruses resulted in (i) a lower replication of the viral backbone that correlated with reduced levels of E2A-specific RNA and protein, (ii) a significant shutoff of late gene and protein expression, and (iii) no apparent virus-induced cytotoxicity. Independently of the extent of the deletion, the additional inactivation of E4 from the viral backbone therefore drastically disabled the virus in vitro, with no apparent effect on transgene expression. A lacZ-transgenic model was used to compare the different recombinant adenoviruses in the livers of C57BL/6 mice. The immune response to the virally encoded beta-galactosidase was minimal in this model, as infusion of the E1-defective adenovirus resulted in a time course of transgene expression that mimicked that in immunodeficient (nu/nu) mice, with very little inflammation and necrosis in the liver. Administration of a doubly defective adenovirus to the transgenic animals led to long-term extrachromosomal persistence of viral DNA in the liver, with no detectable methylation of CpG dinucleotides. However, transient transgene expression was observed independently of the extent of the E4 deletion, suggesting that the choice of the promoter may be critical to maintain transgene expression from these attenuated adenovirus vectors.  相似文献   

9.
G P Gao  Y Yang    J M Wilson 《Journal of virology》1996,70(12):8934-8943
Recombinant adenoviruses with E1 sequences deleted efficiently transfer genes into a wide variety of target cells. Antigen- and nonantigen-specific responses to the therapy lead to toxicity, loss of transgene expression, and difficulties with vector readministration. We have created new cell lines that allowed the isolation of more disabled adenovirus vectors that have both E1 and E4 deletions. Studies with murine models of liver-directed gene therapy indicated that the E1- and E4-deleted vector expresses fewer virus proteins and induces less apoptosis, leading to blunted host responses and an improved safety profile. The impact of the E4 deletion on the stability of vector expression was confounded by immune responses to the transgene product, which in this study was beta-galactosidase. When transgene responses were eliminated, the doubly deleted vector was substantially more stable in mouse liver than was the E1-deleted construct. These studies indicate that adenovirus vectors with both E1 and E4 deletions may have advantages in terms of safety and efficacy over first-generation constructs for liver-directed gene therapy.  相似文献   

10.
Human adenovirus has evolved to infect and replicate in terminally differentiated human epithelial cells, predominantly those within the airway, the gut, or the eye. To overcome the block to viral DNA replication present in these cells, the virus expresses the Early 1A proteins (E1A). These immediate early proteins drive cells into S-phase and induce expression of all other viral early genes. During infection, several E1A isoforms are expressed with proteins of 289, 243, 217, 171, and 55 residues being present for human adenovirus type 5. Here we examine the contribution that the two largest E1A isoforms make to the viral life cycle in growth-arrested normal human fibroblasts. Viruses that express E1A289R were found to replicate better than those that do not express this isoform. Importantly, induction of several viral genes was delayed in a virus expressing E1A243R, with several viral structural proteins undetectable by western blot. We also highlight the changes in E1A isoforms detected during the course of viral infection. Furthermore, we show that viral DNA replication occurs more efficiently, leading to higher number of viral genomes in cells infected with viruses that express E1A289R. Finally, induction of S-phase specific genes differs between viruses expressing different E1A isoforms, with those having E1A289R leading to, generally, earlier activation of these genes. Overall, we provide an overview of adenovirus replication using modern molecular biology approaches and further insights into the contribution that E1A isoforms make to the life cycle of human adenovirus in arrested human fibroblasts.  相似文献   

11.
12.
13.
14.
Transforming growth factor beta1 (TGF-beta1) signaling is compromised in many tumors, thereby allowing the tumor to escape the growth-inhibitory and proapoptotic activities of the cytokine. Human adenoviruses interfere with a number of cellular pathways involved in cell cycle regulation and apoptosis, initially placing the cell in a "tumor-like" state by forcing quiescent cells into the cell cycle and also inhibiting apoptosis. We report that adenovirus-infected cells resemble tumor cells in that TGF-beta1 signaling is inhibited. The levels of TGF-beta1 receptor II (TbetaRII) in adenovirus-infected cells were decreased, and this decrease was mapped, by using virus mutants, to the E1A gene and to amino acids 2 to 36 and the C-terminal binding protein binding site in the E1A protein. The decrease in the TbetaRII protein was accompanied by a decrease in TbetaRII mRNA. The decrease in TbetaRII protein levels in adenovirus-infected cells was greater than the decrease in TbetaRII mRNA, suggesting that downregulation of the TbetaRII protein may occur through more than one mechanism. Surprisingly in this context, the half-lives of the TbetaRII protein in infected and uninfected cells were similar. TGF-beta1 signaling was compromised in cells infected with wild-type adenovirus, as measured with 3TP-lux, a TGF-beta-sensitive reporter plasmid expressing luciferase. Adenovirus mutants deficient in TbetaRII downregulation did not inhibit TGF-beta1 signaling. TGF-beta1 pretreatment reduced the relative abundance of adenovirus structural proteins in infected cells, an effect that was potentiated when cells were infected with mutants incapable of modulating the TGF-beta signaling pathway. These results raise the possibility that inhibition of TGF-beta signaling by E1A is a means by which adenovirus counters the antiviral defenses of the host.  相似文献   

15.
16.
Regulated expression of sFRP-1 protein by the GeneSwitch system   总被引:3,自引:0,他引:3  
The GeneSwitch system is a mifepristone-inducible expression system that provides exceptionally low uninduced and high-induced protein expression in mammalian cells. We have developed an adenovirus recombinant containing GeneSwitch protein driven by the GAL4-tk promoter, as well as recombinants containing sFRP-1 and luciferase reporter under the control of the GAL4-E1b promoter. Luciferase activity in A549 cells infected with the GeneSwitch and Luciferase viruses is very low in ethanol-treated cells, while the level of luciferase activity increases 200-fold in cells treated with mifepristone. Conditional expression of functional sFRP-1 is demonstrated in A549, human osteoblast, and CHO cell lines by either the co-infection of cells with sFRP-1 and GeneSwitch viruses or the infection of GeneSwitch expressing cell lines with sFRP-1 virus and subsequent treatment with mifepristone. The expression of sFRP-1 is seen as early as 4 h post-mifepristone treatment, reaching the highest levels at 20 h. The sFRP-1 protein is present in conditioned media, and the protein is functional based upon its ability to inhibit the Wnt-mediated activation of TCF-Luciferase reporter activity. The regulated expression of sFRP-1 utilizing adenovirus vectors provides an opportunity to address the contribution of sFRP-1 in the regulation of stem cell differentiation, maturation, and their function by modulating the Wnt signaling.  相似文献   

17.
18.
Infection with adenovirus mutants carrying either point mutations or deletions in the coding region for the 19-kDa E1B gene product (19K protein) causes degradation of host cell and viral DNAs (deg phenotype) and enhanced cytopathic effect (cyt phenotype). Therefore, one function of the E1B 19K protein is to protect nuclear DNA integrity and preserve cytoplasmic architecture during productive adenovirus infection. When placed in the background of a virus incapable of expressing a functional E1A gene product, however, E1B 19K gene mutations do not result in the appearance of the cyt and deg phenotypes. This demonstrated that expression of the E1A proteins was responsible for inducing the appearance of the cyt and deg phenotypes. By constructing a panel of viruses possessing E1A mutations spanning each of the three E1A conserved regions in conjunction with E1B 19K gene mutations, we mapped the induction of the cyt and deg phenotypes to the amino-terminal region of E1A. Viruses that fail to express conserved region 3 (amino acids 140 to 185) and/or 2, (amino acids 121 to 185) or nonconserved sequences between conserved regions 2 and 1 of E1A (amino acids 86 to 120) were still capable of inducing cyt and deg. This indicated that activities associated with these regions, such as transactivation and binding to the product of the retinoblastoma susceptibility gene, were dispensable for induction of E1A-dependent cytotoxic effects. In contrast, deletion of sequences in the amino terminus of E1A (amino acids 22 to 107) resulted in extragenic suppression of the cyt and deg phenotypes. Therefore, a function affected by deletion of amino acids 22 to 86 of E1A is responsible for exerting cytotoxic effects in virally infected cells. Furthermore, transient high-level expression of the E1A region using a cytomegalovirus promoter plasmid expression vector was sufficient to induce the cyt and deg phenotypes, demonstrating that E1A expression alone is sufficient to exert these cytotoxic effects and that other viral gene products are not involved. Finally, placing E1A expression under the control of a strong promoter did not alter the requirement for E1B in the transformation of primary cells. One possibility is that the E1B 19K protein is required to overcome the cytotoxic effects of E1A protein expression and thereby enable primary cells to become transformed.  相似文献   

19.
The ability of the adenovirus type 5 E1B 55-kDa mutants dl1520 and dl338 to replicate efficiently and independently of the cell cycle, to synthesis viral DNA, and to lyse infected cells did not correlate with the status of p53 in seven cell lines examined. Rather, cell cycle-independent replication and virus-induced cell killing correlated with permissivity to viral replication. This correlation extended to S-phase HeLa cells, which were more susceptible to virus-induced cell killing by the E1B 55-kDa mutant virus than HeLa cells infected during G1. Wild-type p53 had only a modest effect on E1B mutant virus yields in H1299 cells expressing a temperature-sensitive p53 allele. The defect in E1B 55-kDa mutant virus replication resulting from reduced temperature was as much as 10-fold greater than the defect due to p53 function. At 39°C, the E1B 55-kDa mutant viruses produced wild-type yields of virus and replicated independently of the cell cycle. In addition, the E1B 55-kDa mutant viruses directed the synthesis of late viral proteins to levels equivalent to the wild-type virus level at 39°C. We have previously shown that the defect in mutant virus replication can also be overcome by infecting HeLa cells during S phase. Taken together, these results indicate that the capacity of the E1B 55-kDa mutant virus to replicate independently of the cell cycle does not correlate with the status of p53 but is determined by yet unidentified mechanisms. The cold-sensitive nature of the defect of the E1B 55-kDa mutant virus in both late gene expression and cell cycle-independent replication leads us to speculate that these functions of the E1B 55-kDa protein may be linked.  相似文献   

20.
The transformation-defective Vero cell host range mutant CS-1 of the highly oncogenic adenovirus type 12 (Ad12) (Ad12-CS-1) has a 69-bp deletion in the early region 1A (E1A) gene that removes the carboxy-terminal half of conserved region 2 and the amino-terminal half of the Ad12-specific so-called spacer that seems to play a pivotal role in the oncogenicity of the virus. Despite its deficiency in immortalizing and transforming primary rodent cells, we found that the E1A 13S protein of Ad12-CS-1 retains the ability to bind p105-RB, p107, and p130 in nuclear extract binding assays with glutathione S-transferase-E1A fusion proteins and Western blot analysis. Like wild-type E1A, the mutant protein was able to dissociate E2F from retinoblastoma-related protein-containing complexes, as judged from gel shift experiments with purified 12S and 13S proteins from transfection experiments with an E1A expression vector or from infection with the respective virus. Moreover, in transient expression assays, the 12S and 13S products of wild-type Ad12 and Ad12-CS-1 were shown to transactivate the Ad12 E1A promoter containing E2F-1 and E2F-5-motifs, respectively, in a comparable manner. The same results were obtained from transfection assays with the E2F motif-dependent E2 promoter of adenovirus type 5 or the human dihydrofolate reductase promoter. These data suggest that efficient infection by Ad12 and the correlated virus-induced reprogramming of the infected cells, including the induction of cell cycle-relevant mechanisms (e.g. E2F activation), can be uncoupled from the transformation properties of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号