首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Cu(2+)-induced permeability of cytoplasmic membranes of Escherichia coli for different cations and neutral molecules of saccharose was estimated by studying their effect on cell plasmolysis during uncharged exchange of cytoplasmic K+ ions by periplasmic space cations. The addition of copper resulted in the exchange of K+ ions by periplasmic Na+, Tris+, streptomycin2+, Cu2+, Ca2+, Mg2+, Cd2+, and Mn2+. It is concluded that Cu(2+)-induced conducting pathways in bacterial membranes are hydrophilic channels with a radius of approximately 0.5 nm and a nonselective permeability for different cations.  相似文献   

2.
Net hepatic Ca2+ efflux, K+ uptake and glycogen breakdown in response to the alpha 1-adrenergic agonist phenylephrine were studied. Rat livers were perfused with CO2/bicarbonate-buffered solutions containing 10 microM Ca2+ and different amounts of Mg2+. K+-free medium and/or ouabain were used to block (Na+ + K+)-ATPase-dependent K+ uptake. In some experiments a sharp increase in extracellular Ca2+ concentrations was produced by infusing CaCl2 into the medium entering the liver. Perfusion with K+-free medium and ouabain enhanced the phenylephrine-induced Ca2+ efflux and diminished the glycogenolytic response, indicating a dissociation of Ca2+ release and glycogenolysis. Exogenous Ca2+ had practically no effect if livers were perfused with regular medium containing 1.2 mM Mg2+. In the presence of phenylephrine and if extracellular Mg2+ concentrations were lowered by omitting Mg2+ from the medium or by preperfusion with EGTA, exogenous Ca2+ was glycogenolytically effective and also produced a transient K+ uptake. Increased extracellular concentrations of Mg2+ inhibited the effects of exogenous Ca2+. In the presence of phenylephrine, higher concentrations of Mg2+ were needed than in the absence of alpha 1-adrenergic agonist to achieve a similar degree of inhibition. In one respect ouabain effects were comparable to those of phenylephrine: the glycoside also increased the metabolic response to exogenous Ca2+ and diminished the sensitivity towards Mg2+. Phenylephrine and ouabain may both enhance the permeability of plasma membranes for Ca2+.  相似文献   

3.
The effect of Cd2+ poisoning of Saccharomyces cerevisiae on 45Ca, 109Cd and [14C]tetraphenylphosphonium (TPP) uptake and cell pH was examined. At Cd2+ concentrations that produced substantial K+ efflux the rates of uptake of 45Ca, 109Cd and [14C]TPP increased progressively during incubation of the cells with Cd2+, and the cell pH was lowered concomitantly. The initial rates of uptake of the divalent cations and of TPP were increased in cells pre-loaded with Cd2+, which shows that stimulation of the ion fluxes was exerted by the Cd2+ that accumulated in the cells. The distribution ratio of TPP between cells and medium, however, was decreased by Cd2+. Although hyperpolarization of the cell membrane by Cd2+ cannot be excluded, it is argued that Cd2+ primarily stimulated divalent cation uptake by increasing the cation permeability of the cell membrane allowing the cations to enter the cells more easily.  相似文献   

4.
The sensitivity of the (Na+ + K+)-ATPase in human red cell membranes to inhibition by Ca2+ is markedly increased by the addition of diluted cytoplasm from hemolyzed human red blood cells. The concentration of Ca2+ causing 50% inhibition of the (Na+ + K+)-ATPase is shifted from greater than 50 microM free Ca2+ in the absence of hemolysate to less than 10 microM free Ca2+ when hemolysate diluted 1:60 compared to in vivo concentrations is added to the assay mixture. Boiling the hemolysate destroys its ability to increase the sensitivity of the (Na+ + K+)-ATPase to Ca2+. Proteins extracted from the membrane in the presence of EDTA and concentrated on an Amicon PM 30 membrane increased the sensitivity of the (Na+ + K+)-ATPase to Ca2+ in a dose-dependent fashion, causing over 80% inhibition of the (Na+ + K+)-ATPase at 10 microM free Ca2+ at the highest concentration of the extract tested. The active factor in this membrane extract is Ca2+-dependent, because it had no effect on the (Na+ + K+)-ATPase in the absence of Ca2+. Trypsin digestion prior to the assay destroyed the ability of this protein extract to increase the sensitivity of the (Na+ + K+)-ATPase to Ca2+.  相似文献   

5.
The effect of EGTA, commonly present in Ca2+-free physiological saline solution, on the contractile responses induced by Ca2+ and phenylephrine was studied in dog mesenteric arteries and aortas of rats and rabbits. EGTA substantially enhanced the contractile responses of these vascular strips or rings to added Ca2+ after a prolonged preincubation period in the Ca2+-free medium. The maximal level of the enhanced contractile responses was independent of EGTA concentration, but the rate of the maximal responses was faster at higher EGTA concentration, presumably as a result of faster removal of intracellular Ca2+. Such a Ca2+-induced response was sensitive to the Ca2+ antagonist, nifedipine. EGTA present at low concentrations (50 and 400 microM) in Ca2+-free medium also inhibited the phenylephrine-induced contractile response more prominently for the longer preincubation periods of the vascular tissues in Ca2+-free medium. Our results suggest that EGTA, even when added at low concentrations to the vascular smooth muscle for a sufficiently long period in Ca2+-free medium, may cause destabilization of the cell membranes leading to increased permeability to subsequently added Ca2+. EGTA may also remove the superficially bound Ca2+ and subsequently reduce the intracellular Ca2+ pool via extraction of the intracellular Ca2+ at the cell membrane surfaces.  相似文献   

6.
The influence of Tl+ on Na+ transport and on the ATPase activity in human erythrocytes was studied. 0.1-1.0 mM Tl+ added to a K+-free medium inhibited the ouabain-sensitive self-exchange of Na+ and activated both the ouabain-sensitive 22Na outward transport and the transport related ATPase. 5-10mM external Tl+ caused inhibition of the ouabain-sensitive 22Na efflux as well as the (Na+ plus Tl+)-ATPase. Competition between the internal Na+ and rapidly penetrating thallous ions at the inner Na+-specific binding sites of the erythrocyte membrane could account for the inhibitory effect of Tl+. An increase of the internal Na+ concentration in erythrocytes or in ghosts protected the system against the inhibitory effect of high concentration of Tl+. A protective effect of Na+ was also demonstrated on the (Na+ plus Tl+)-ATPase of fragmented erythrocyte membranes studied at various Na+ and Tl+ concentrations.  相似文献   

7.
Inducible and specific ion fluxes on plasma membranes represent very early events during elicitation of plant cells. The hierarchy of such ion fluxes involved is still unknown. The effect of Phytophthora sojae-derived beta-glucan elicitors on the plasma membrane potential as well as on surface K+, Ca2+, and H+ fluxes has been investigated on soybean roots using ion-selective microelectrodes. Beta-Glucans with different degrees of polymerization transiently depolarized the plasma membrane. The elicitor concentration necessary for half-maximal depolarization closely resembled the corresponding binding affinities of soybean root membranes toward the respective beta-glucans. Upon repeated elicitor treatment, the root cells responded partially refractory, suggesting a complex responsiveness of the system. Within the root hair space, characteristic decreasing K(+)- and Ca(2+)-free concentrations were induced by the elicitors, probably causing depolarization through the influx of positive charges. Whereas K+ fluxes were inverted after passing the K+ equilibrium (Nernst-) potential, Ca2+ influx continued. No anion fluxes sufficient to account for charge compensation were observed under the same experimental conditions. K+ and Ca2+ fluxes as well as depolarization were inhibited by 100 microM or less of the Ca2+ antagonist La3+. Contrasting other systems, in soybean the main cause for elicitor-induced plasma membrane depolarization is the activation of cation instead of anion fluxes.  相似文献   

8.
Rat cortical synaptosomes responded to a reduction of external Ca2+ from pCa 3.5 to pCa 4.8 in the absence of MgCl2 with a slight decrease of internal K+ and an increase of Na+. The effects were prevented by tetrodotoxin or millimolar concentrations of MgCl2. Further lowering of external pCa to 7.7 with N-hydroxyethylethylenediaminetriacetate evoked a rapid fall of internal K+, which was specifically blocked by Ruthenium Red; tetrodotoxin and nifedipine were ineffective. A linear relationship was established between K+ and methyltriphenylphosphonium cation distribution ratios by varying external pCa between 4.8 and 7.7, indicating that K+ efflux resulted from a depolarization of the plasma membrane. An increase of Na+ permeability was suggested by the synaptosomes' gain of Na+ and the disappearance of the depolarization in an Na+-free sucrose medium. According to the constant field equation, the permeability ratio PNa/PK increased from 0.029 at pCa4.8 to 0.090 at pCa 7.7 with plasma membrane potentials of -74mV and -47mV, respectively. Since the plasma membrane responded to variation of external Ca2+ activities in the micromolar range with a graded and sustained depolarization, the use of Ca2+ buffers to control membrane potentials is suggested.  相似文献   

9.
This study examines the effect of membrane potential on divalent cation entry in dispersed parotid acini following stimulation by the muscarinic agonist, carbachol, and during refill of the agonist-sensitive internal Ca2+ pool. Depolarizing conditions (addition of gramicidin to cells in Na(+)-containing medium or incubation of cells in medium with elevated [K+]) prevent carbachol-stimulated hyperpolarization of acini and also inhibit carbachol activation of Ca2+ and Mn2+ entry into these cells. Conditions promoting hyperpolarization (cells in medium with Na+ or with N-methyl-D-glucamine instead of Na+) enhance carbachol stimulation of divalent cation entry. Intracellular Ca2+ release (initial increase in [Ca2+]i) does not appear to be affected by these manipulations. Mn2+ entry into resting and internal Ca2+ pool-depleted cells (10-min carbachol stimulation in a Ca(2+)-free medium) is similarly affected by membrane potential modulations, and refill of the internal pool by Ca2+ is inhibited by depolarization. The inhibitory effects of depolarization on divalent cation entry can be overcome by increasing extracellular [Ca2+] or [Mn2+]. These data demonstrate that the modulation of Ca2+ entry into parotid acini by membrane potential is most likely due to effects on the electrochemical gradient (Em-ECa) for Ca2+ entry.  相似文献   

10.
With the use of oxonol voltage-sensitive fluorescent dye it has been shown that the stimulation of macrophages (MP) with tuftsin results in a two-phase change in membrane potential: depolarization followed by hyperpolarization of plasma membrane. The pattern of changes in membrane potential depends on Na+ concentration in the medium and is disturbed with binding of cytoplasmic Ca2+. Fluorescent signal obtained from MP loaded with Ca(2+)-activated photoprotein obelin points to a significant increase in the concentration of cytoplasmic Ca2+ under the influence of tuftsin on cells: the source for Ca2+ being the medium. The rate of regulatory voltage decrease in MP increases under the influence of tuftsin: the effect of this peptide being similar to that of calcium ionophore. All these findings taken together enable us to suggest a phenomenological scheme of transmembrane ion signals arising during stimulation of MP with tuftsin: the receptor-mediated calcium channel provides a rise in cytoplasmic Ca2+ which opens non-selective cation channels for Na+ ions to activate eventually Ca(2+)-dependent K(+)-transport.  相似文献   

11.
The effects of extracellular K+ in relation to extracellular Ca2+ on acid production were studied. Studies were performed in vitro using isolated cells from rat stomachs, and acid production was indirectly determined by 14C-aminopyrine (AP) accumulation. In the absence of K+ in the incubation medium histamine-stimulated AP accumulation ratios were significantly decreased independently in the presence or absence of extracellular Ca2+. Under basal conditions, in the absence of extracellular Ca2+, increasing concentrations of extracellular K+ enhanced AP accumulation ratios to significantly higher than those found in the presence of Ca2+. In histamine-, cAMP-, and carbachol-stimulated parietal cells, high K+ concentrations increased AP accumulation significantly less in Ca(2+)-free than in Ca(2+)-containing media. High K+ also induced significantly both an increase in cytosolic free Ca2+ concentration and 45Ca2+ uptake. The present results confirmed the importance of K+ in gastric acid production and suggested a role for Ca2+ as a modulator of mechanisms of parietal cell stimulation.  相似文献   

12.
The transport of Cd2+ and the effects of this ion on secretory activity and metabolism were investigated in beta cell-rich pancreatic islets isolated from obese-hyperglycemic mice. The endogenous cadmium content was 2.5 mumol/kg dry wt. After 60 min of incubation in a Ca2+-deficient medium containing 2.5 microM Cd2+ the islet cadmium content increased to 0.18 mmol/kg dry wt. This uptake was reduced by approx. 50% in the presence of 1.28 mM Ca2+. The incorporation of Cd2+ was stimulated either by raising the concentration of glucose to 20 mM or K+ to 30.9 mM. Whereas D-600 suppressed the stimulatory effect of glucose by 75%, it completely abolished that obtained with high K+. Only about 40% of the incorporated cadmium was mobilized during 60 min of incubation in a Cd2+-free medium containing 0.5 mM EGTA. It was possible to demonstrate a glucose-induced suppression of Cd2+ efflux into a Ca2+-deficient medium. Concentrations of Cd2+ up to 2.5 microM did not affect glucose oxidation, whereas, there was a progressive inhibition when the Cd2+ concentration was above 10 microM. Basal insulin release was stimulated by 5 microM Cd2+. At a concentration of 160 microM, Cd2+ did not affect basal insulin release but significantly inhibited the secretory response to glucose. It is concluded that the beta cell uptake of Cd2+ is facilitated by the activation of voltage-dependent Ca2+ channels. Apparently, the accumulation of Cd2+ mimics that of Ca2+ also involving a component of intracellular sequestration promoted by glucose.  相似文献   

13.
(Ca2+ + Mg2+)-ATPase activity of red cells and their isolated membranes was investigated in the presence of various Ca2+ concentrations and cytoplasmic activator protein. Red cell ATPase activity was high at low Ca2+ concentrations, and low at moderate and high concentrations of Ca2+. In the case of isolated membranes, both low and moderate ca2+ concentrations produced higher (Ca2+ + Mg2+)-ATPase activity than high Ca2+ concentration. Membrane-free hemolysate containing soluble activator of (Ca2+ + Mg2+)-ATPase produced a significant increase in (Ca2+ + Mg2+)-ATPase activity only at low ca2+ concentration. Regardless of Ca2+ and activator concentrations, the enzyme activity in the membrane was lower than lysed red cells. The low level of (Ca2+ + Mg2+)-ATPase activity seen at high Ca2+ concentration can be augmented by lowering the Ca2+ concentration of EGTA in the assay medium. However, once the membrane was exposed to a high Ca2+ concentration, the activator could no longer exert it maximum stimulation at the low Ca2+ concentration brought about by addition of EGTA. This loss of activation was not attributable to the Ca2+-induced denaturation of activator protein but rather related to the alteration of (Ca2+ + Mg2+)-ATPase states in the membrane. On the basis of these data, it is suggested that only a small portion of (Ca2+ + Mg2+)-ATPase activity of isolated membranes can be stimulated by the soluble activator and that (ca2+ + Mg2+)ATPase most likely exists in various states depending upon ca2+ concentration and the presence of activator. The enzyme state exhibiting the high degree of stimulation by activator may undergo irreversible damage in the presence of high Ca2+ concentrations.  相似文献   

14.
Human peripheral blood lymphocytes regulate their volumes in hypotonic solutions. In hypotonic media in which Na+ is the predominant cation, an initial swelling phase is followed by a regulatory volume decrease (RVD) associated with a net loss of cellular K+. In media in which K+ is the predominant cation, the rapid initial swelling is followed by a slower second swelling phase. 86Rb+ fluxes increased during RVD and returned to normal when the original volume was approximately regained. Effects similar to those induced by hypotonic stress could also be produced by raising the intracellular Ca++ level. In isotonic, Ca++- containing media cells were found to shrink upon addition of the Ca++ ionophore A23187 in K+-free media, but to swell in K+-rich media. Exposure to Ca++ plus A23187 also increased 86Rb+ fluxes. Quinine (75 microM), an inhibitor of the Ca++-activated K+ pathway in other systems blocked RVD, the associated K+ loss, and the increase in 86Rb+ efflux. Quinine also inhibited the volume changes and the increased 86Rb fluxes induced by Ca++ plus ionophore. The calmodulin inhibitors trifluoperazine, pimozide and chlorpromazine blocked RVD as well as Ca++ plus A23187-induced volume changes. Trifluoperazine also prevented the increase in 86Rb+ fluxes and K+ loss induced by hypotonicity. Chlorpromazine sulfoxide, a relatively ineffective calmodulin antagonist, was considerably less potent as an inhibitor of RVD than chlorpromazine. It is suggested than an elevation in cytoplasmic [Ca++], triggered by cell swelling, increases the plasma membrane permeability to K+, the ensuing increased efflux of K+, associated anions, and osmotically obliged water, leading to cell shrinking (RVD).  相似文献   

15.
Human red blood cells treated in vitro with Ca2+ plus A23187 in low K+ medium exhibited significantly decreased cell volume and deformability, the latter determined by ektacytometry. These effects of Ca2+ plus A23187 were prevented in the presence of high K+ medium. Increased K+ permeability mediated by increased intracellular Ca2+ (Gardos effect) was apparently responsible for decreased cell volume and deformability in low K+ medium. Although it is commonly accepted that Ca2+ accumulation and/or ATP depletion per se cause decreased red blood cell deformability, the present results demonstrate that acutely induced changes in red blood cell volume as promoted by Ca2+ are a more important determinant of red blood cell deformability.  相似文献   

16.
Lymphocyte membrane potential assessed with fluorescent probes   总被引:33,自引:0,他引:33  
The membrane potential of mouse spleen lymphocytes has been assessed with two fluorescent probes. 3,3'-Dipropylthiadicarbocyanine (diS-C3-(5)) was used for most of the experiments. Solutions with high K+ concentrations depolarised the cells. Valinomycin, an inophore which adds a highly K+-selective permeability membranes, slightly hyperpolarised cells in standard (6 mM K+) solution, and in 145 mM K+ solution produced a slight additional depolarisation. These findings indicate a membrane whose permeability is relatively selective for K+. Very small changes in potential were seen when choline replaced Na+, or gluconate replaced Cl-, supporting the idea of K+ selectivity. The resting potential could be estimated from the K+ concentration gradient at which valinomycin did not change the potential-the "valinomycin null point" - and under the conditions used the resting potential was approx.-60 mV. B cell-enriched suspensions were prepared either from the spleens of nu/nu mice or by selective destruction of T cells in mixed cell populations. The membrane potential of these cells was similar to that estimated for the mixed cells. In solution with no added K+, diS-C3-(5) itself appeared to depolarise the lymphocytes, in a concentration dependent manner. With the 100 nM dye normally used, the membrane potential in K+-free solution was around -45 mV, and 500 nM dye almost completely depolarised the cells. In standard solution quinine depolarised the cells. Valinomycin could still depolarise these cells indicating that depolarisation had not been due to dissipation of the K+ gradient. Since in K+-free solution diS-C3-(5) blocks the Ca2+-activated K+ channels in human red blood cell ghosts and quinine also blocks this K+ channel it is suggested that the resting lymphocyte membrane may have a similar Ca2+-activated K+ permeability channel. Because of the above mentioned effect of diS-C3-(5) and other biological side effects, such as inhibition of B cell capping, a chemically distinct fluorescent probe of membrane potential, bis(1,3-diethylthiobarbiturate)-trimethineoxonol was used to support the diS-C3-(5) data. This new probe proved satisfactory except that it formed complexes with valinomycin, ruling out the use of this ionophore. Results with the oxonol on both mixed lymphocytes and B cell-enriched suspensions gave confirmation of the conclusions from diS-C3-(5) experiments and indicated that despite its biological side effects, diS-C3-(5) could still give valid assessment of membrane potential.  相似文献   

17.
The effects of ommission of Ca2+ and Mg2+ from the incubation medium on three aspects of insulin action in isolated fat cells have been investigated. In the (Ca2+ + Mg2+)-free incubation medium incorporation of L-[14C]leucine into fat cell protein was reduced in the absence of insulin. Insulin stimulated L-[14C]leucine incorporation only in the presence of added CaCl2 or MgCl2. Incubation of the cells in the (Ca2+ + Mg2+)-free medium reduced but did not abolish the ability of adrenaline to stimulate lipolysis or the ability of insulin to inhibit the adrenaline-stimulated lipolysis. Specific binding of 125I-labelled insulin to the fat cells was reduced in the absence of Ca2+ and Mg2+ but was not abolished, even in the presence of EDTA. Ca2+ was routinely the most effective divalent cation in supporting these aspects of insulin action, but similar responses were obtained with Mg2+, Sr2+ and Ba2+. Since insulin still binds to the cells under conditions in which some of the cellular effects of the hormone are abolished, it is suggested that divalent cations may have a role, either direct or indirect, in the processes linking the insulin-insulin receptor complex to certain effector systems in the cells. It is tentatively suggested that this action occurs at the level of the fat cell plasma membrane.  相似文献   

18.
Haemolysin Kanagawa, a toxin from Vibrio parahaemolyticus, is known to trigger haemolysis. Flux studies indicated that haemolysin forms a cation channel. In the present study, channel properties were elucidated by patch clamp and functional significance of ion fluxes by fluorescence-activated cell sorting (FACS) analysis. Treatment of human erythrocytes with 1 U ml-1 haemolysin within minutes induces a non-selective cation permeability. Moreover, haemolysin activates clotrimazole-sensitive K+ channels, pointing to stimulation of Ca2+-sensitive Gardos channels. Haemolysin (1 U ml-1) leads within 5 min to slight cell shrinkage, which is reversed in Ca2+-free saline. Erythrocytes treated with haemolysin (0.1 U ml-1) do not undergo significant haemolysis within the first 60 min. Replacement of extracellular Na+ with NMDG+ leads to slight cell shrinkage, which is potentiated by 0.1 U ml-1 haemolysin. According to annexin binding, treatment of erythrocytes with 0.1 U ml-1 haemolysin leads within 30 min to breakdown of phosphatidylserine asymmetry of the cell membrane, a typical feature of erythrocyte apoptosis. The annexin binding is significantly blunted at increased extracellular K+ concentrations and by K+ channel blocker clotrimazole. In conclusion, haemolysin Kanagawa induces cation permeability and activates endogenous Gardos K+ channels. Consequences include breakdown of phosphatidylserine asymmetry, which depends at least partially on cellular loss of K+.  相似文献   

19.
The effect of the membrane potential (K(+)-valinomycin system) on the Mg2+, ATP-dependent transport of Ca2+ in inside-out vesicles of myometrium sarcolemma has been studied. The membrane potential was identified by using a cyanine potential-sensitive probe, diS-C3-(5). In the presence of valinomycin (5.10(-8) M) the inside-out directed K+ gradient (delta psi = -86 mV, with a negative charge inside) stimulated the initial rate of the energy-dependent accumulation of Ca2+ transfer whereas the oppositely directed K+ gradient (delta psi = +72 mV, with a positive charge inside) had no effect on this process. The K+ gradient was formed by isotonic substitution of K+ in intra- or extravesicular space for choline +. At the same time, in the absence of K+ gradient the Mg2+, ATP-dependent accumulation of Ca2+ in membrane vesicles did not depend on the chemical nature of the cations (K+ or choline+) used for isotonicity. The decrease of delta psi from 0 to -86 mV affects the initial rate of Ca2+ accumulation but not the maximal content of the accumulated cation. Preliminary dissipation of the membrane potential (delta psi = -86 mV) in Mg2(+)-free isotonic (with respect of K+ and choline+) media containing ATP and Ca2+ resulted in the inhibition of Mg2+, ATP-dependent Ca2+ transport induced by subsequent addition of Mg2+. These results indicate that the negative (intravesicular) electrical potential activates the Ca-pump of smooth muscle sarcolemma. This activation is based on the increase in the turnover number of the Ca2+ transporting system but not on its affinity for the transfer substrate. The use of the absolute reaction rates theory made it possible to establish that the Ca-pump effectuates the transport of a single positive charge in inside-out vesicles of smooth muscle plasma membranes, i.e., the energy-dependent transport of Ca2+ occurs either as a symport (with an anion (Cl-) or an antiport with a monovalent cation (K+) or a proton. It is assumed that the potential dependence of the Ca-pump in the smooth muscle plasma membrane plays a role in the realization of effects of mediators and physiologically active substances that are manifested as stimulation of the contractile response and depolarization of the sarcolemma. In is quite probable that the delta psi-dependent Ca-pump is also responsible for the maintenance of intracellular homeostasis of monovalent cations (K+, H+, Cl-) in smooth muscle tissues.  相似文献   

20.
Cadmium inhibition of the erythrocyte Ca2+ pump. A molecular interpretation   总被引:1,自引:0,他引:1  
The effects of cadmium (Cd2+) on transmembrane Ca2+ transport and on the membrane permeability for Ca2+ were studied in human erythrocytes. The erythrocyte Ca2+ pump is inhibited competitively by Cd2+ via interaction with the Ca2+ transport site of the carrier and not via interaction with its activator calmodulin. The affinity of the Ca2+ pump for Cd2+ is extremely high (KI = 2.0 nM Cd2+). Cd2+ (less than or equal to 10(-4) M) does not alter the membrane permeability for Ca2+. We conclude that the pivotal mechanism in the toxic action of Cd2+ is the inhibition of Ca2+-ATPase mediated Ca2+ extrusion. As a result Cd2+ disturbs intracellular Ca2+ homeostasis and may increase cytosolic Ca2+ (Ca2+i) to toxic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号