共查询到20条相似文献,搜索用时 130 毫秒
1.
土壤宏基因组学技术及其应用 总被引:17,自引:0,他引:17
传统的基于培养的研究方法只能反映土壤中少数(0.1%~10 %)微生物的信息,而大部分微生物目前还不能培养,因而这部分微生物资源尚难以被有效地开发利用.宏基因组学是分子生物学技术应用于环境微生物生态学研究而形成的一个新概念,主要技术包括土壤DNA的提取、文库的构建和目标基因克隆的筛选.它可为揭示微生物生态功能及其分子基础提供更全面的遗传信息,并已在微生物新功能基因筛选、活性物质开发和微生物多样性研究等方面取得了显著成果.本文对土壤宏基因组学技术的方法和应用作了详细介绍. 相似文献
2.
2004年7月美国国立卫生研究院牙科与颌面研究中心(NIDCR)专门征集“利用宏基因组学研究口腔微生物”的研究申请书,征集通知中明确其目的是利用宏基因组学(Metagenomic)的技术,研究口腔中微生物群落,以阐明微生物在人类口腔健康和疾病中的作用. 相似文献
3.
4.
宏基因组是指环境中所有微生物的遗传物质总和。宏基因组学技术可以最大限度地利用环境中的微生物资源,受到了国内外微生物研究者的重点关注。口腔中寄居着大量的微生物群落,以往对口腔疾病微生物的研究大多局限于单纯的细菌培养技术,然而,由于培养技术的局限性,部分微生物很难或根本不能培养,宏基因组学技术打破了这一局限性,帮助人类发掘更丰富的口腔微生物资源。最近,以宏基因组学测序为基础的研究描绘出了口腔生态系统的图谱,越来越多的实验证明口腔微生物组在各种口腔疾病甚至全身系统性疾病中的重要作用。同时,这也为基于人类微生物组的诊断和治疗开辟了新的途径。本综述旨在说明宏基因组学是研究人类口腔疾病及全身疾病相关微生物的得力工具,而且具有广阔的发展前景,同时也讨论了宏基因组学在应用中有待克服的局限性。 相似文献
5.
6.
微生物蕴藏着大量具有工业应用潜力的生物催化剂。然而,传统培养方法只能从环境中获得不到1%的微生物。宏基因组学是通过提取某一特定环境中的所有微生物基因组DNA、构建基因组文库并对文库进行筛选,寻找和发现新的功能基因的一种方法。它绕过了微生物分离培养过程,成为研究环境样品中不可培养微生物的有力手段。因此,从宏基因组中挖掘新型生物催化剂一直倍受生物学家的关注。以下主要对宏基因组文库的样品来源、DNA提取方法、文库的构建和筛选策略的选择这4个方面的研究状况进行了综述,列举了近年来利用宏基因组技术所获得的新型生物催化剂,并对其今后的研究方向提出了展望。 相似文献
7.
宏基因组学在人和动物胃肠道微生物研究中的应用进展 总被引:1,自引:0,他引:1
人和动物胃肠道存在大量微生物群落,这些微生物是与宿主长期共同进化的结果,并且同宿主的健康和疾病密切相关,因此胃肠道微生物研究已成为当今的热点研究领域。宏基因组学技术在这一领域的应用,使我们不仅能够对胃肠道微生物群落结构及多样性进行分析,还能进一步深入了解其代谢功能,开发和利用潜在的微生物及其基因资源。文中结合我们的研究工作,综述了宏基因组学在人和动物胃肠道微生物研究中的应用,同时着重介绍宏基因组研究的生物信息学技术。 相似文献
8.
9.
10.
宏基因组学在发现新基因方面的应用 总被引:2,自引:0,他引:2
现代分子微生物生态学研究表明,自然环境中约99%的微生物不能用传统的分离培养方法获得其纯培养,使得环境微生物中的多样性基因资源难以得到充分的开发和应用.宏基因组学是近年来发展起来的,通过直接提取特定环境中全部微生物的总基因组DNA并克隆到合适的可培养微生物宿主中,来筛选目的基因的方法.它已在微生物新功能基因筛选、活性物质开发和微生物多样性研究等方面取得了显著成果.该文旨在介绍宏基因组学在新功能基因发现方面的应用概况并结合我们的研究情况,对这一崭新领域中的最近研究进展进行简要综述. 相似文献
11.
12.
Metagenomics in animal gastrointestinal ecosystem: Potential biotechnological prospects 总被引:1,自引:0,他引:1
Microbial metagenomics---the applications of the genomics suit of technologies to nonculturable microorganisms, is coming of age. These approaches can be used for the screening and identification of nonculturable gastrointestinal (GI) microflora for assessing and exploiting them in nutrition and the health of the host. Advances in technologies designed to access this wealth of genetic information through environmental nucleic acids extraction and analysis have provided the means of overcoming the limitations of conventional culture-dependent microbial genetic exploitation. The molecular techniques and bioinformatics tools will result in reliable insights into the animals' GI microbial structure and activity of the livestock gut microbes in relation to functional interactions, temporal and spatial relationships among different microbial consortia and dietary ingredients. Further developments and applications of these methods promise to provide the opportunity to link distribution and identity of various GI microbes in their natural habitats, and explore their use for promoting livestock health and industrial development. 相似文献
13.
Modern biotechnology has a steadily increasing demand for novel genes for application in various industrial processes and
development of genetically modified organisms. Identification, isolation and cloning for novel genes at a reasonable pace
is the main driving force behind the development of unprecedented experimental approaches. Metagenomics is one such novel
approach for engendering novel genes. Metagenomics of complex microbial communities (both cultivable and uncultivable) is
a rich source of novel genes for biotechnological purposes. The contributions made by metagenomics to the already existing
repository of prokaryotic genes is quite impressive but nevertheless, this technique is still in its infancy. In the present
review we have drawn comparison between routine cloning techniques and metagenomic approach for harvesting novel microbial
genes and described various methods to reach down to the specific genes in the metagenome. Accomplishments made thus far,
limitations and future prospects of this resourceful technique are discussed. 相似文献
14.
Pravin Dudhagara Sunil Bhavsar Chintan Bhagat Anjana Ghelani Shreyas Bhatt Rajesh Patel 《基因组蛋白质组与生物信息学报(英文版)》2015,13(5):296-303
The development of next-generation sequencing(NGS) platforms spawned an enormous volume of data. This explosion in data has unearthed new scalability challenges for existing bioinformatics tools. The analysis of metagenomic sequences using bioinformatics pipelines is complicated by the substantial complexity of these data. In this article, we review several commonly-used online tools for metagenomics data analysis with respect to their quality and detail of analysis using simulated metagenomics data. There are at least a dozen such software tools presently available in the public domain. Among them, MGRAST, IMG/M, and METAVIR are the most well-known tools according to the number of citations by peer-reviewed scientific media up to mid-2015. Here, we describe 12 online tools with respect to their web link, annotation pipelines, clustering methods, online user support, and availability of data storage. We have also done the rating for each tool to screen more potential and preferential tools and evaluated five best tools using synthetic metagenome. The article comprehensively deals with the contemporary problems and the prospects of metagenomics from a bioinformatics viewpoint. 相似文献
15.
16.
【目的】利用宏基因组学技术挖掘土壤微生物来源的新型酯酶。【方法】构建土壤微生物宏基因组文库,利用三丁酸甘油酯平板法对所构建的文库进行筛选,并对阳性克隆中鉴定出的酯酶基因进行异源表达和生物化学特性分析。【结果】通过筛选文库中的12万个克隆,获得了一个阳性克隆,对克隆中的DNA片段进行序列分析,发现了一个可能的酯酶基因,通过研究其表达产物,确定其最适pH为9.0,最适反应温度为56°C,在90°C下仍可保持20%的酶活性;能专一性水解短链脂类,对长链脂类无水解作用;对一定浓度范围内的有机试剂如二甲基亚砜、甲醇、乙醇有较好的耐受性,尤其当二甲基亚砜含量为10%(体积比)时,相对酶活可提高44%。【结论】不依赖于微生物可培养性的宏基因组学技术可以发现新的活性酶,本研究获得的对高温、有机试剂有较好耐受性的酯酶ESTYN1具有在工业生产中应用的潜力。 相似文献
17.
Dupré J O'Malley MA 《Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences》2007,38(4):834-846
Metagenomics is an emerging microbial systems science that is based on the large-scale analysis of the DNA of microbial communities in their natural environments. Studies of metagenomes are revealing the vast scope of biodiversity in a wide range of environments, as well as new functional capacities of individual cells and communities, and the complex evolutionary relationships between them. Our examination of this science focuses on the ontological implications of these studies of metagenomes and metaorganisms, and what they mean for common sense and philosophical understandings of multicellularity, individuality and organism. We show how metagenomics requires us to think in different ways about what human beings are and what their relation to the microbial world is. Metagenomics could also transform the way in which evolutionary processes are understood, with the most basic relationship between cells from both similar and different organisms being far more cooperative and less antagonistic than is widely assumed. In addition to raising fundamental questions about biological ontology, metagenomics generates possibilities for powerful technologies addressed to issues of climate, health and conservation. We conclude with reflections about process-oriented versus entity-oriented analysis in light of current trends towards systems approaches. 相似文献
18.
Metagenomics,biotechnology with non-culturable microbes 总被引:16,自引:0,他引:16
Metagenomics as a new field of research has been developed over the past decade to elucidate the genomes of the non-cultured
microbes with the goal to better understand global microbial ecology on the one side, and on the other side it has been driven
by the increasing biotechnological demands for novel enzymes and biomolecules. Since it is well accepted that the majority
of all microbes has not yet been cultured, the not-yet-cultivated microbes represent a shear unlimited and intriguing resource
for the development of novel genes, enzymes and chemical compounds for use in biotechnology. However, with respect to biotechnology,
metagenomics faces now two major challenges. Firstly, it has to identify truly novel biocatalysts to fulfil the needs of industrial
processes and green chemistry. Secondly, the already available genes and enzymes need to be implemented in production processes
to further prove the value of metagenome-derived sequences. 相似文献
19.
20.
微生物和人类已经共同进化几百万年了,微生物在维持宿主健康方面起到了非常重要的作用。随着下一代测序技术的进步,可以获得人体在不同环境下微生物群落的特征。本文综述了当前感染各种不同病原菌时复杂微生物群落的变化,病原菌包括HIV、乙肝病毒、流感病毒和结核分支杆菌,以及不同的身体部位。我们相信,增加对传染性疾病和微生物群落变化之间关系的认识,能够更好地管理疾病进展。然而,将来的研究可能需要更加整体化,通过分析人体宿主微生物与传染性疾病的发生机制之间的关系,以建立疾病的确切因果关系。 相似文献