首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
High-density lipoproteins (HDLs) are considered antiatherogenic because they mediate reverse cholesterol transport from the periphery to the liver for excretion and degradation. Here we show that mice deficient in apolipoprotein M (apoM), a component of the HDL particle, accumulated cholesterol in large HDL particles (HDL(1)) while the conversion of HDL to prebeta-HDL was impaired. Accordingly, apoM-deficient mice lacked prebeta-HDL, a subclass of lipid-poor apolipoproteins that serves as a key acceptor of peripheral cellular cholesterol. This deficiency led to a markedly reduced cholesterol efflux from macrophages to apoM-deficient HDL compared to normal HDL in vitro. Overexpression of apoM in Ldlr(-/-) mice protected against atherosclerosis when the mice were challenged with a cholesterol-enriched diet, showing that apoM is important for the formation of prebeta-HDL and cholesterol efflux to HDL, and thereby inhibits formation of atherosclerotic lesions.  相似文献   

3.
Cholesterol is an essential component of eukaryotic membranes. To prevent the toxicity associated with cholesterol overload, cells transport excess cholesterol across the plasma membrane in part through the ABCA1 lipid transporter. The discovery that mutations in ABCA1 are associated with high-density lipoprotein (HDL)-deficiency syndromes led to studies that show ABCA1, through its transport of cholesterol and phospholipid to apolipoprotein acceptors in the bloodstream, is crucial for the formation of HDL particles. In the intestine, ABCA1 transports cholesterol from the epithelial cells to the bloodstream, contributing to approximately one-third of HDL production. In the arterial wall, excess cholesterol in macrophages is associated with atherosclerosis; here, ABCA1 is anti-atherogenic because it enables macrophages to rid themselves of excess cholesterol.  相似文献   

4.
Atherosclerosis is one of the most common causes of death worldwide. Epidemiology studies firmly established an inverse relationship between atherogenesis and distorted lipid metabolism, in particular, higher levels of total cholesterol, an accumulation of CH-laden macrophages (foam cells), and lower plasma levels of antiatherogenic high density lipoprotein (HDL). It is believed that the reverse cholesterol transport, a process that removes excess cholesterol from peripheral tissues/cells including macrophages to circulating HDL, is one of the main mechanisms responsible for anti-atherogenic properties of HDL. The key proteins of reverse cholesterol transport—ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1)—mediate the cholesterol efflux from macrophages and prevent their transformation into foam cells. This review focuses on the role of ABC transporters A1 and G1 in the pathogenesis of atherosclerosis.  相似文献   

5.
Mechanisms to increase plasma high-density lipoprotein (HDL) or to promote egress of cholesterol from cholesterol-loaded cells (e.g., foam cells from atherosclerotic lesions) remain an important target to regress heart disease. Reconstituted HDL (rHDL) serves as a valuable vehicle to promote cellular cholesterol efflux in vitro and in vivo. rHDL were prepared with wild type apolipoprotein (apo) A-I and the rare variant, apoA-I Milano (M), and each apolipoprotein was reconstituted with phosphatidylcholine (PC) or sphingomyelin (SM). The four distinct rHDL generated were incubated with CHO cells, J774 macrophages, and BHK cells in cellular cholesterol efflux assays. In each cell type, apoA-I(M) SM-rHDL promoted the greatest cholesterol efflux. In BHK cells, the cholesterol efflux capacities of all four distinct rHDL were greatly enhanced by increased expression of ABCG1. Efflux to PC-containing rHDL was stimulated by transfection of a nonfunctional ABCA1 mutant (W590S), suggesting that binding to ABCA1 represents a competing interaction. This interpretation was confirmed by binding experiments. The data show that cholesterol efflux activity is dependent upon the apoA-I protein employed, as well as the phospholipid constituent of the rHDL. Future studies designed to optimize the efflux capacity of therapeutic rHDL may improve the value of this emerging intervention strategy.  相似文献   

6.
7.
Psoriasis, a chronic inflammatory skin disease, has been linked to increased myocardial infarction and stroke. Functional impairment of HDL may contribute to the excess cardiovascular mortality of psoriatic patients. However, data available regarding the impact of psoriasis on HDL composition and function are limited. HDL from psoriasis patients and healthy controls was isolated by ultracentrifugation and shotgun proteomics, and biochemical methods were used to monitor changed HDL composition. We observed a significant reduction in apoA-I levels of HDL from psoriatic patients, whereas levels of apoA-II and proteins involved in acute-phase response, immune response, and endopeptidase/protease inhibition were increased. Psoriatic HDL contained reduced phospholipid and cholesterol. With regard to function, these compositional alterations impaired the ability of psoriatic HDL to promote cholesterol efflux from macrophages. Importantly, HDL-cholesterol efflux capability negatively correlated with psoriasis area and severity index. We observed that control HDL, as well as psoriatic HDL, inhibited dihydrorhodamine (DHR) oxidation to a similar extent, suggesting that the anti-oxidative activity of psoriatic HDL is not significantly altered. Our observations suggest that the compositional alterations observed in psoriatic HDL reflect a shift to a pro-inflammatory profile that impairs cholesterol efflux capacity of HDL and may provide a link between psoriasis and cardiovascular disease.  相似文献   

8.
Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality in the United States and in many other countries. Dysfunctional lipid homeostasis plays a central role in the initiation and progression of atherosclerotic lesions. The ATP-binding cassette (ABC) transporters are transmembrane proteins that hydrolyze ATP and use the energy to drive the transport of various molecules across cell membranes. Several ABC transporters play a pivotal role in lipid trafficking. They are critically involved in cholesterol and phospholipid efflux and reverse cholesterol transport (RCT), processes that maintain cellular cholesterol homeostasis and protect arteries from atherosclerosis. In this article we provide a review of the current literature on the biogenesis of ABC transporters and highlight their proposed functions in atheroprotection.  相似文献   

9.
Recent studies demonstrate that HDL’s ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL’s major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL’s cholesterol efflux capacity. We therefore tested the hypothesis that HDL’s impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL’s cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL’s protein cargo.  相似文献   

10.
11.
12.
Atherosclerotic cardiovascular disease (ASCVD) is the most common cause of morbidity and mortality in Western societies. Current therapies, such as reduction of plasma cholesterol, significantly reduce, but do not come close to eliminating, the complications of ASCVD. Therefore, novel therapeutic approaches to the prevention of acute coronary events and progression of atherosclerosis are still needed. The complex metabolism of high density lipoproteins represents an attractive potential target for therapeutic intervention. Here, we will discuss those components of the high density lipoprotein metabolism and lipid transport pathways that are potential preventative or therapeutic targets for ASCVD.  相似文献   

13.
14.
The effects of androgens on cardiovascular disease (CVD) risk in men remain unclear. To better characterize the relationship between androgens and HDL, we investigated the effects of testosterone replacement on HDL protein composition and serum HDL-mediated cholesterol efflux in hypogonadal men. Twenty-three older hypogonadal men (ages 51-83, baseline testosterone < 280 ng/dl) were administered replacement testosterone therapy (1% transdermal gel) with or without the 5α-reductase inhibitor dutasteride. At baseline and after three months of treatment, we determined fasting lipid concentrations, HDL protein composition, and the cholesterol efflux capacity of serum HDL. Testosterone replacement did not affect HDL cholesterol (HDL-C) concentrations but conferred significant increases in HDL-associated paraoxonase 1 (PON1) and fibrinogen α chain (FGA) (P = 0.022 and P = 0.023, respectively) and a decrease in apolipoprotein A-IV (apoA-IV) (P = 0.016). Exogenous testosterone did not affect the cholesterol efflux capacity of serum HDL. No differences were observed between men who received testosterone alone and those who also received dutasteride. Testosterone replacement in older hypogonadal men alters the protein composition of HDL but does not significantly change serum HDL-mediated cholesterol efflux. These effects appear independent of testosterone conversion to dihydrotestosterone. Further research is needed to determine how changes in HDL protein content affect CVD risk in men.  相似文献   

15.
Cholesterol plays an important role during brain development, since it is involved in glial cell proliferation, neuronal survival and differentiation, and synaptogenesis. Astrocytes produce large amounts of brain cholesterol and produce and release lipoproteins containing apoE that can extract cholesterol from CNS cells for elimination. We hypothesized that some of the deleterious effects of ethanol in the developing brain may be due to the disruption of cholesterol homeostasis in astrocytes. This study investigates the effect of ethanol on cholesterol efflux mediated by ATP-binding cassette (ABC) cholesterol transporters. In fetal rat astrocytes in culture, ethanol caused a concentration-dependent increase in cholesterol efflux and increased the levels of ABCA1 starting at 25 mm. Similar effects of ethanol on cholesterol efflux and ABCA1 were also observed in fetal human astrocytes. In addition, ABCA1 levels were increased in the brains of 7-day-old pups treated for 3 days with 2, 4, or 6 g/kg ethanol. Ethanol also increased apoE release from fetal rat astrocytes, and conditioned medium prepared from ethanol-treated astrocytes extracted more cholesterol than conditioned medium from untreated cells. In addition, ethanol increased the levels of another cholesterol transporter, ABCG1. Ethanol did not affect cholesterol synthesis and reduced the levels of intracellular cholesterol in rat astrocytes. Retinoic acid, which induces teratogenic effects similarly to ethanol, also caused up-regulation of ABCA1 and ABCG1.  相似文献   

16.
17.
18.
胆固醇是细胞质膜的重要组成成分。然而,过多的胆固醇累积可导致细胞中毒。异常的胆固醇胞内迁移与蓄积是造成许多心血管疾病如动脉粥样硬化的分子基础。细胞内胆固醇稳态由胆固醇的吸收、合成及外排等一系列过程调控。在哺乳动物细胞中,调节胆固醇合成、吸收和外排是维持体内胆固醇平衡的必要生理过程。本综述着重概述了三磷酸腺苷结合盒转运体(ABC)家族,如ABCA1、ABCG1、ABCG5和ABCG8的细胞功能及生理作用,以及这些转运体在调控胆固醇胞外转运中的分子机制。  相似文献   

19.
AimsHigh-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised.MethodsReconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL + LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages.ResultsrHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux.ConclusionsIncreasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics.Non-standard abbreviations and acronyms: AAPH, 2,2′-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low-density lipoprotein; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PL, phospholipid; PCOOH, phosphatidylcholine hydroperoxide; PLOOH, phospholipid hydroperoxide.  相似文献   

20.
Adipose tissue constitutes a major location for cholesterol storage and, as such, it may play a role in the regulation of circulating cholesterol levels. A possible metabolic link between the lipolytic activity of adipocytes and their ability to release cholesterol to reconstituted human high density lipoprotein, HDL, was investigated in 3T3-L1 adipocytes. In the presence of HDL, composed of human apoA-I and phosphatidylcholine, adipocytes release cholesterol in a lipoprotein-dose and time dependent fashion. β-adrenergic activation of the lipolysis promotes a 22% increase in the extent of cholesterol efflux to reconstituted discoidal HDL particles. Activation of lipolysis promotes a rapid decrease in the cholesterol content of the plasma membrane and a concomitant increase in lipid droplet cholesterol. This change is independent of the presence of HDL. Activation of the lipolysis does not affect the levels of ABCA1 and SR-BI. Therefore, the enhancement of cholesterol efflux is not due to the level of plasma membrane cholesterol, or to the levels of the cholesterol transporters ABCA1 and scavenger receptor SR-BI. Brefeldin A did not affect the rate of cholesterol efflux under basal lipolytic conditions, but it abolished the lipolysis-dependent enhancement of cholesterol efflux to HDL. This study suggests that activation of lipolysis is accompanied by an increase in BFA-sensitive vesicular transport that in turn enhances cholesterol efflux to HDL. The study supports a metabolic link between the lipolytic activity of adipocytes and the rate of cellular cholesterol efflux to HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号