首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Yeast dsRNA viruses: replication and killer phenotypes   总被引:7,自引:0,他引:7  
  相似文献   

2.
The plasmid determinants of killer phenotypes in type K1 and K2 killer yeast cells are the 1.9-kilobase (kb) M1 and 1.7-kb M2 double-stranded RNAs (dsRNAs), respectively. These are dependent for their maintenance and encapsidation, in Saccharomyces cerevisiae virus ScV-M1 or ScV-M2 virus-like particles, on the capsid provided by one of a group of moderately related 4.7-kb dsRNAs called LA. The L1A and L2A dsRNAs found in naturally isolated K1 and K2 killers encode 88-kilodalton VL1A-P1 and 86-kilodalton VL2A-P1 capsids, respectively. These are competent for encapsidating homologous LA dsRNAs as well as M dsRNAs. Most strains of S. cerevisiae, including killers, contain one of a second group of closely related 4.7-kb dsRNAs called LBC. These encode their own 82-kilodalton capsid protein, VLBC-P1, which, at least in strains containing only LBC, encapsidates homologous dsRNA in ScV-LBC virus-like particles. In a K1 killer strain containing both L1A and LBC, ScV-M1 particles contain only VL1A-P1. In such strains it is probable that each virus-like particle contains a single capsid type and that each L dsRNA is encapsidated by a homologous capsid.  相似文献   

3.
Killer toxin-secreting strains of the yeasts Hanseniaspora uvarum and Zygosaccharomyces bailii were shown to contain linear double-stranded RNAs (dsRNAs) that persist within the cytoplasm of the infected host cell as encapsidated virus-like particles. In both yeasts, L- and M-dsRNAs were associated with 85-kDa major capsid protein, whereas the additional Z-dsRNA (2.8 kb), present only in the wild-type Z. bailii killer strain, was capsid protein, whereas the additional Z-dsRNA (2.8 kb), present only in the wild-type Z. bailii killer strain, was shown to be encapsidated by a 35-kDa coat protein. Although Northern (RNA) blot hybridizations indicated that L-dsRNA from Z. bailii is a LA species, additional peptide maps of the purified 85-kDa capsid from Z. bailii and the 88- and 80-kDa major coat proteins from K1 and K28 killer viruses of Saccharomyces cerevisiae revealed distinctly different patterns of peptides. Electron microscopy of purified Z. bailii viruses (ZbV) identified icosahedral particles 40 nm in diameter which were undistinguishable from the S. cerevisiae killer viruses. We demonstrated that purified ZbVs are sufficient to confer the Z. bailii killer phenotype on transfected spheroplasts of a S. cerevisiae nonkiller strain and that the resulting transfectants secreted even more killer toxin that the original ZbV donor strain did. Curing experiments with ZbV-transfected S. cerevisiae strains indicated that the M-dsRNA satellite from Z. bailii contains the genetic information for toxin production, whereas expression of toxin immunity might be dependent on Z-dsRNA, which resembles a new dsRNA replicon in yeasts that is not dependent on an LA helper virus to be stably maintained and replicated within the cell.  相似文献   

4.
Killer strains of Saccharomyces cerevisiae bear at least two different double-stranded RNAs (dsRNAs) encapsidated in 39-nm viruslike particles (VLPs) of which the major coat protein is coded by the larger RNA (L-A dsRNA). The smaller dsRNA (M1 or M2) encodes an extracellular protein toxin (K1 or K2 toxin). Based on their densities on CsCl gradients, L-A- and M1-containing particles can be separated. Using this method, we detected a new type of M1 dsRNA-containing VLP (M1-H VLP, for heavy) that has a higher density than those previously reported (M1-L VLP, for light). M1-H and M1-L VLPs are present together in the same strains and in all those we tested. M1-H, M1-L, and L-A VLPs all have the same types of proteins in the same approximate proportions, but whereas L-A VLPs and M1-L VLPs have one dsRNA molecule per particle, M1-H VLPs contain two M1 dsRNA molecules per particle. Their RNA polymerase produces mainly plus single strands that are all extruded in the case of M1-H particles but are partially retained inside the M1-L particles to be used later for dsRNA synthesis. We show that M1-H VLPs are formed in vitro from the M1-L VLPs. We also show that the peak of M1 dsRNA synthesis is in fractions lighter than M1-L VLPs, presumably those carrying only a single plus M1 strand. We suggest that VLPs carrying two M1 dsRNAs (each 1.8 kilobases) can exist because the particle is designed to carry one L-A dsRNA (4.5 kilobases).  相似文献   

5.
Total dsRNA extractions in five killer K2 strains of Saccharomyces cerevisiae isolated from spontaneous fermentations revealed the presence of a novel dsRNA fragment (which we named NS dsRNA) of approximately 1.30 kb, together with L and M2 dsRNAs. NS dsRNA appeared to be encapsidated in the same kind of viral particles as L and M2 dsRNA. Northern blot hybridization experiments indicated that NS dsRNA was derived from M2 dsRNA, likely by deletion of the internal A+U-rich region. However, unlike S dsRNAs (suppressive forms derived from M1 dsRNA in K1 killers), NS dsRNA did not induce exclusion of the parental M2 dsRNA when the host strain was maintained for up to 180 generations of growth.  相似文献   

6.
7.
Yeast killer mutants with altered double-stranded ribonucleic acid   总被引:49,自引:13,他引:36       下载免费PDF全文
Killer strains of Saccharomyces cerevisiae contain two species of double-stranded ribonucleic acid (dsRNA) with molecular weights estimated at 2.5 x 10(6) (L) and 1.4 x 10(6) (M). The M component appears to have a high adenine content. All mutants of killer which are defective for both the toxin and immunity functions lack the M dsRNA. One of these mutants has a novel dsRNA with a molecular weight of 5 x 10(5). Another class of killer mutants contains strains which are defective for either the toxin or the immunity function. They include temperature-sensitive killers, superkillers, and immunity-minus strains. The dsRNA profile of temperature-sensitive killers resembles that of the standard killer. The superkiller has 2.5 times more of the M dsRNA (1.4 x 10(6) daltons) than does the standard killer. Immunity-minus killers have, in addition to the two dsRNAs species of standard killer, a novel dsRNA with a molecular weight of 2.5 x 10(5). The data are consistent with the hypothesis that the M RNA controls toxin production. In addition, the two RNAs, L and M, seem to be regulated together. When the M RNA is missing, the amount of L is either greatly elevated or greatly reduced.  相似文献   

8.
Summary A cDNA copy of the M2 dsRNA encoding the K2 killer toxin ofSaccharomyces cerevisiae was expressed in yeast using the yeastADH1 promoter. This construct produced K2-specific killing and immunity functions. Efficient K2-specific killing was dependent on the action of the KEX2 endopeptidase and the KEX1 carboxypeptidase, while K2-specific immunity was independent of these proteases. Comparison of the K2 toxin sequence with that of the K1 toxin sequence shows that although they share a common processing pathway and are both encoded by cytoplasmic dsRNAs of similar basic structure, the two toxins are very different at the primary sequence level. Site-specific mutagenesis of the cDNA gene establishes that one of the two potential KEX2 cleavage sites is critical for toxin action but not for immunity. Immunity was reduced by an insertion of two amino acids in the hydrophobic amino-terminal region which left toxin activity intact, indicating an independence of toxin action and immunity.  相似文献   

9.
The L double-stranded (ds) RNA component of Saccharomyces cerevisiae may contain up to three dsRNA species, each with a distinct sequence but with identical molecular weights. These dsRNAs have been separated from each other by denaturation and polyacrylamide gel electrophoresis. The 3' terminal sequences of the major species, LA dsRNA, were determined. Secondary structural analysis supported the presence of two stem and loop structures at the 3' terminus of the LA positive strand. In strain T132B NK-3, both the LA and LC species are virion encapsidated. Two distinct classes of virions were purified from this strain, each with a different RNA polymerase activity and with distinct protein components. The heavy virions harbored LA dsRNA, whereas the LC dsRNA species co purified with the light virion peak. Thus, LA and LC dsRNAs, when present in the same cell, may be separately encapsidated.  相似文献   

10.
The M species (medium sized) dsRNA (1.1–1.4 × 106 daltons) isolated from a toxin-producing yeast killer strain (K+R+) and three related, defective interfering (suppressive) S species dsRNAs of the yeast killer-associated cytoplasmic multicomponent viral-like particle system were analyzed by in vitro translation in a wheat germ cell-free protein synthesis system. Heat-denatured M species dsRNA programmed the synthesis of two major polypeptides, M-P1 (32,000 daltons) and M-P2 (30,000 daltons). M-P1 has been shown by the criteria of proteolytic peptide mapping and cross-antigenicity to contain the 12,000 dalton polypeptide corresponding to the in vivo produced killer toxin, thus establishing that it is the M species dsRNA which carries the toxin gene. An M species dsRNA obtained from a neutral strain (K?R+) also programmed the in vitro synthesis of a polypeptide identical in molecular weight to M-P1, thus indicating that the cytoplasmic determinant of the mutant neutral phenotype is either a simple point mutation in the dsRNA toxin gene or a mutation in a dsRNA gene which is required for functional toxin production. In vitro translation of each of the three different suppressive S dsRNAs resulted in the production of a polypeptide (S-P1) of approximately 8000 daltons instead of the 32,000 dalton M-P1 polypeptide programmed by M dsRNA. This result is consistent with the heteroduplex analysis of these dsRNAs by Fried and Fink (1978), which shows retention of M dsRNA ends, accompanied by large internal deletions in each of the S dsRNAs translated.  相似文献   

11.
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.  相似文献   

12.
The M2 double-stranded (ds) RNA species encodes toxin and resistance functions in Saccharomyces cerevisiae strains with the K2 killer specificity. RNA sequence analysis reveals the presence of a large open reading frame on the larger heat-cleavage product of M2 dsRNA, which is translated in vitro to yield a 28 kd polypeptide as a major product. The postulated translation initiator AUG triplet is located within a stem and loop structure near the 5' terminus of the positive strand, which also contains plausible 18S and 5.8S ribosomal RNA binding sites. These features may serve to regulate the translation of the K2 toxin precursor. The M1 (from type 1 yeast killers) and M2 dsRNA species lack extensive sequence homology, although specific features are shared, which may represent structural elements required for gene expression and replication.  相似文献   

13.
Killer strains contain two double stranded RNAs, L and M. The M dsRNA appears to be necessary for production of a toxin and for resistance to that toxin. Mutant strains have been found that are defective in their ability to kill and in their resistance to toxin. These sensitive, non-killer strains have altered dsRNA composition. One class has no M dsRNA. Another class of sensitive, non-killers called suppressives has no M dsRNA but instead has smaller dsRNAs called S. In diploids resulting from a cross of a wild-type killer by a suppressive the transmission of the M dsRNA is suppressed by the S dsRNA. When a suppressive is crossed by a strain with no M dsRNA, the diploids and all four meiotic spores have the S dsRNA characteristic of the parental suppressive strain. Suppressive strains do not suppress each other. Intercrosses between two different suppressives yields diploids with both parental S dsRNAs. These two S dsRNAs are transmitted to all 4 meiotic progeny. Another class of mutants has been found which is defective for one of the traits but retains the other. One type, temperature-sensitive killers, has a normal dsRNA composition but is unable to kill at 30°. The other type, immunity-minus, has a complex dsRNA pattern. The immunity-minus strain is extremely unstable during mitotic growth and segregates several different types of non-killers. Analysis of the dsRNAs from wild type and the mutants by electron microscopy shows that the L, M, and S dsRNAs are linear. All strains regardless of killer phenotype appear to have the same size L dsRNA.  相似文献   

14.
We have completely sequenced a defective interfering viral double-stranded RNA (dsRNA) from the Saccharomyces cerevisiae virus. This RNA (S14) is a simple internal deletion of its parental dsRNA, M1, of 1.9 kilobases. The 5' 964 bases of the M1 plus strand encode the type 1 killer toxin of the yeast. S14 is 793 base pairs (bp) long, with 253 bp from the 5' region of its parental plus strand and 540 bp from the 3' region. All three defective interfering RNAs derived from M1 that have been characterized so far preserve a large 3' region, which includes five repeats of a rotationally symmetrical 11-bp consensus sequence. This 11-bp sequence is not present in the 5' 1 kilobase of the parental RNA or in any of the sequenced regions of unrelated yeast viral dsRNAs, but it is present in the 3' region of the plus strand of another yeast viral dsRNA, M2, that encodes the type 2 killer toxin. The 3' region of 550 bases of the M1 plus strand, previously only partially sequenced, reveals no large open reading frames. Hence only about half of M1 appears to have a coding function.  相似文献   

15.
pet18 mutations in Saccharomyces cerevisiae confer on the cell the inability to maintain either L-A or M double-stranded RNAs (dsRNAs) at the nonpermissive temperature. In in vitro experiments, we examined the effects of pet18 mutations on the RNA-dependent RNA polymerase activity associated with virus-like particles (VLPs). pet18 mutations caused thermolabile RNA polymerase activity of L-A VLPs, and this thermolability was found to be due to the instability of the L-A VLP structure. The pet18 mutations did not affect RNA polymerase activity of M VLPs. Furthermore, the temperature sensitivity of wild-type L-A RNA polymerase differed substantially from that of M RNA polymerase. From these results, and from other genetic and biochemical lines of evidence which suggest that replication of M dsRNA requires the presence of L-A dsRNA, we propose that the primary effect of the pet18 mutation is on the L-A VLP structure and that the inability of pet18 mutants to maintain M dsRNA comes from the loss of L-A dsRNA.  相似文献   

16.
The type 1 killer phenotype in S. cerevisiae, mediated by secretion of an 11.5 kilodalton (kd) protein toxin, is cytoplasmically determined by the 1.9 kb M1-dsRNA plasmid. Maintenance of M1-dsRNA is dependent on the 4.5 kb L1-dsRNA because L1 encodes the capsid protein of the virus-like particles that separately encapsidate both dsRNA species. We have shown that in vitro translation of denatured M1-dsRNA produces M1-P1, a 32 kd protein containing the toxin peptides. We now demonstrate the presence of an unstable, 42 kd, membrane-associated, glycosylated protoxin in killer cells, probably derived from M1-P1 by cotranslational processing, and glycosylation. In vitro cotranslational processing of M1-P1, derived both from in vivo mRNAs and from denatured M1-dsRNA, produces a product resembling protoxin. Processing involves loss of 1.6 kd of protein, presumably an N-terminal leader peptide, and glycosylation. This information, together with data on in vitro expression of suppressive deletion mutants of M1-dsRNA, allows construction of testable models for the functional sequence of M1-P1 and for its maturation to toxin.  相似文献   

17.
ABSTRACT: BACKGROUND: Occurrence of extrachromosomal dsRNA elements has been described in the red-yeast Xanthophyllomyces dendrorhous, with numbers and sizes that are highly variable among strains with different geographical origin. The studies concerning to the encapsidation of viral-like particles and dsRNA-curing have suggested that some dsRNAs are helper viruses, while others are satellite viruses. However, the nucleotide sequences and functions of these dsRNA are still unknown. In this work, the nucleotide sequences of four dsRNAs of the strain UCD 67-385 of X. dendrorhous were determined, and their identities and genome structures are proposed. Based on this molecular data, the dsRNAs of different strains of X. dendrorhous were analyzed. RESULTS: The complete sequences of L1, L2, S1 and S2 dsRNAs of X. dendrorhous UCD 67-385 were determined, finding two sequences for L1 dsRNA (L1A and L1B). Several ORFs were uncovered in both S1 and S2 dsRNAs, but no homologies were found for any of them when compared to the database. Instead, two ORFs were identified in each L1A, L1B and L2 dsRNAs, whose deduced amino acid sequences were homologous with a major capsid protein (5'-ORF) and a RNA-dependent RNA polymerase (3'-ORF) belonging to the Totivirus family. The genome structures of these dsRNAs are characteristic of Totiviruses, with two overlapped ORFs (the 3'-ORF in the -1 frame with respect to the 5'-ORF), with a slippery site and a pseudoknot in the overlapped regions. These structures are essential for the synthesis of the viral polymerase as a fusion protein with the viral capsid protein through -1 ribosomal frameshifting. In the RNase protection analysis, all the dsRNAs in the four analyzed X. dendrorhous strains were protected from enzymatic digestion. The RT-PCR analysis revealed that, similar to strain UCD 67-385, the L1A and L1B dsRNAs coexist in the strains VKM Y-2059, UCD 67-202 and VKM Y-2786. Furthermore, determinations of the relative amounts of L1 dsRNAs using two-step RT-qPCR revealed a 40-fold increment of the ratio L1A/L1B in the S2 dsRNA-cured strain compared to its parental strain. CONCLUSIONS: Three totiviruses, named as XdV-L1A, XdV-L1B and XdV-L2, were identified in the strain UCD 67-385 of X. dendrorhous. The viruses XdV-L1A and XdV-L1B were also found in other three X. dendrorhous strains. Our results suggest that the smaller dsRNAs (named XdRm-S1 and XdRm-S2) of strain UCD 67-385 are satellite viruses, and particularly that XdRm-S2 is a satellite of XdV-L1A.  相似文献   

18.
Double-stranded RNAs (dsRNAs) have been found in two isolates of the plant pathogenic fungus Fusarium graminearum which produce trichothecene mycotoxins. The isolates 8.2 and 19.2 had dsRNAs in the size of about 2.0 kb and 6.0 kb, respectively, which were associated with capsid proteins and persisted within the cytoplasm of the infected host cells as encapsidated virus-like particles (VLPs). The dsRNAs contained in the VLP pellets were the same size as the dsRNA isolated in total nucleic acid preparations. In the VLP pellets the isolate 19.2 had a second dsRNA with the size of about 1.6 kb. After mycovirus purification one icosahedral particle of about 28 nm in diameter from the isolate 8.2 and two icosahedral particles of about 28 nm and 38 to 40 nm in diameter from the isolate 19.2 could be identified with electron microscopy. SDS-PAGE analysis of the VLPs from the isolate 8.2 revealed one major protein component of approximately 65 kDa, while the isolate 19.2 had two major protein bands at about 94 kDa and 105 kDa. Both isolates were studied for potential trichothecene production. Tox5 PCR showed a 658 bp fragment in each isolate. In addition, both strains were able to produce the trichothecenes deoxynivalenol (DON), the derivatives acetyl-DON (3-A-DON, 15-A-DON) and nivalenol (NIV) in vitro.  相似文献   

19.
M1 and M2 double-stranded RNAs (dsRNAs) code for the K1R1 and K2R2 killer toxin and resistance functions, respectively. Natural variants of a larger dsRNA (L-A) carry various combinations of the [EXL], [HOK], and [NEX] genes, which affect the K1 and K2 killer systems. Other dsRNAs, the same size as L-A, called L-B and L-C, are often present with L-A. We show that K1 killer strains have [HOK] and [NEX] but not [EXL] on their L-A (in disagreement with Field et al., Cell 31:193-200, 1982). These strains also carry other L-size molecules detectable after heat-curing has eliminated L-A. The exclusion of M2 dsRNA observed on mating K2 strains with K1 strains is due to the M1 dsRNA (not the L-A dsRNA as claimed by Field et al.) in the K1 strains. Four independent mutants of a [KIL-k2] [NEX-o] [HOK-o] strain were selected for resistance to [EXL] exclusion of M2 ([EXLR] phenotype). The [EXLR] phenotype showed non-Mendelian inheritance in each case, and these mutants had simultaneously each acquired [HOK]. The mutations were located on L-A and not on M2, and did not confer resistance to M1 exclusion of M2.  相似文献   

20.
Killer toxin K1 of Saccharomyces cerevisiae kills sensitive cells of the same species by disturbing the ion gradient across the plasma membrane after binding to the receptor at cell wall beta-1,6-glucan. Killer protein K2 is assumed to act by a similar mechanism. To identify the putative plasma membrane receptors for both toxins we mutagenized three sensitive S. cerevisiae strains and searched for clones with killer-resistant spheroplasts. The well diffusion assay identified three phenotypically different groups of clones: clones resistant simultaneously to both toxins, clones with lowered sensitivity to only K1 toxin and those with strongly lowered sensitivity to K2 and partially lowered sensitivity to K1 toxin. These phenotypes are controlled by recessive mutations that belong to at least four different complementation groups. This indicates certain differences at the level of interaction of K1 and K2 toxin with sensitive cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号