首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The performance of an innovative two-stage continuous bioreactor with cell recycle—potentially capable of giving very high ethanol productivity—was investigated. The first stage was dedicated to cell growth, whereas the second stage was dedicated to ethanol production. A high cell density was obtained by an ultrafiltration module coupled to the outlet of the second reactor. A recycle loop from the second stage to the first one was tested to improve cell viability and activity. Cultivations of Saccharomyces cerevisiae in mineral medium on glucose were performed at 30°C and pH 4. At steady state, total biomass concentrations of 59 and 157 gDCW l−1 and ethanol concentrations of 31 and 65 g l−1 were obtained in the first and second stage, respectively. The residual glucose concentration was 73 g l−1 in the first stage and close to zero in the second stage. The present study shows that a very high ethanol productivity (up to 41 g l−1 h−1) can indeed be obtained with complete conversion of the glucose and with a high ethanol titre (8.3°GL) in the two-stage system.  相似文献   

2.
A two-stage two-stream chemostat system and a two-stage two-stream immobilized upflow packed-bed reactor system were used for the study of lactic acid production by Lactobacillus casei subsp casei. A mixing ratio of D 12/D 2 = 0.5 (D = dilution rate) resulted in optimum production, making it possible to generate continuously a broth with high lactic acid concentration (48 g l−1) and with a lowered overall content of initial yeast extract (5  g l−1), half the concentration supplied in the one-step process. In the two-stage chemostat system, with the first stage at pH 5.5 and 37 °C and a second stage at pH 6.0, a temperature change from 40 °C to 45 °C in the second stage resulted in a 100% substrate consumption at an overall dilution rate of 0.05 h−1. To increase the cell mass in the system, an adhesive strain of L. casei was used to inoculate two packed-bed reactors, which operated with two mixed feedstock streams at the optimal conditions found above. Lactic acid fermentation started after a lag period of cell growth over foam glass particles. No significant amount of free cells, compared with those adhering to the glass foam, was observed during continuous lactic acid production. The extreme values, 57.5 g l−1 for lactic acid concentration and 9.72 g l−1 h−1 for the volumetric productivity, in upflow packed-bed reactors were higher than those obtained for free cells (48 g l−1  and 2.42 g l−1 h−1) respectively and the highest overall l(+)-lactic acid purity (96.8%) was obtained in the two-chemostat system as compared with the immobilized-cell reactors (93%). Received: 4 December 1997 / Received revision: 23 February 1998 / Accepted: 14 March 1998  相似文献   

3.
Kinetic comparisons of mesophilic and thermophilic aerobic biomass   总被引:1,自引:0,他引:1  
Kinetic parameters describing growth and decay of mesophilic (30°C) and thermophilic (55°C) aerobic biomass were determined in continuous and batch experiments by using oxygen uptake rate measurements. Biomass was cultivated on a single soluble substrate (acetate) in a mineral medium. The intrinsic maximum growth rate (μ max) at 55°C was 0.71±0.09 h−1, which is 1.5 times higher than the μ max at 30°C (0.48±0.11 h−1). The biomass decay rates increased from 0.004 h−1 at 30°C to 0.017 h−1 at 55°C. Monod constants were very low for both types of biomass: 9±2 mg chemical oxygen demand (COD) l−1at 30°C and 3±2 mg COD l−1at 55°C. Theoretical biomass yields were similar at 30 and 55°C: 0.5 g biomass COD (g acetate COD)−1. The observed biomass yields decreased under both temperature conditions as a function of the cell residence time. Under thermophilic conditions, this effect was more pronounced due to the higher decay rates, resulting in lower biomass production at 55°C compared to 30°C. Electronic Publication  相似文献   

4.
A microorganism with the ability to catalyze the resolution of racemic phenyloxirane was isolated and identified as Aspergillus niger SQ-6. Chiral capillary electrophoresis was successfully applied to separate both phenyloxirane and phenylethanediol. The epoxide hydrolase (EH) involved in this resolution process was (R)-stereospecific and constitutively expressed. When whole cells were used during the biotransformation process, the optimum temperature and pH for stereospecific vicinal diol production were 35°C and 7.0, respectively. After a 24-h conversion, the enantiomer excess of (R)-phenylethanediol produced was found to be >99%, with a conversion rate of 56%. In fed-batch fermentations at 30°C for 44 h, glycerol (20 g L−1) and corn steep liquor (CSL) (30 g L−1) were chosen as the best initial carbon and nitrogen sources, and EH production was markedly improved by pulsed feeding of sucrose (2 g L−1 h−1) and continuous feeding of CSL (1 g L−1 h−1) at a fermentation time of 28 h. After optimization, the maximum dry cell weight achieved was 24.5±0.8 g L−1; maximum EH production was 351.2±13.1 U L−1 with a specific activity of 14.3±0.5 U g−1. Partially purified EH exhibited a temperature optimum at 37°C and pH optimum at 7.5 in 0.1 M phosphate buffer. This study presents the first evidence for the existence of a predicted epoxide racemase, which might be important in the synthesis of epoxide intermediates.  相似文献   

5.
Bacillus mycoides strain RIJ B-017, a growth-associated poly-3-hydroxybutyrate (PHB) producer was grown on sucrose-containing media. PHB accumulated in cells up to 72% of dry cell mass. The overall maximum value of PHB yield (Y p/s) and productivities (Q p andq p) 250 mgp/gs, 120 mgp L−1 h−1 and 30 mgp gx −1 h−1, respectively, were obtained at 15 g/L sucrose. Differential scanning calorimeter heating curve showed two peaks, one at 95.9 °C and another at 165.4°C with a shoulder around 154.6 °C. The viscosity-average molar mass in chloroform at 27°C was 505 kDa. The carbon content of PHB was 55.4% of the mass.  相似文献   

6.
Biodegradation of propanol and isopropanol by a mixed microbial consortium   总被引:1,自引:0,他引:1  
The aerobic biodegradation of high concentrations of 1-propanol and 2-propanol (IPA) by a mixed microbial consortium was investigated. Solvent concentrations were one order of magnitude greater than any previously reported in the literature. The consortium utilized these solvents as their sole carbon source to a maximum cell density of 2.4 × 109 cells ml−1. Enrichment experiments with propanol or IPA as carbon sources were carried out in batch culture and maximum specific growth rates (μmax) calculated. At 20 °C, μ max values were calculated to be 0.0305 h−1 and 0.1093 h−1 on 1% (v/v) IPA and 1-propanol, respectively. Growth on propanol and IPA was carried out between temperatures of 10 °C and 45 °C. Temperature shock responses by the microbial consortium at temperatures above 45 °C were demonstrated by considerable cell flocculation. An increase in propanol substrate concentration from 1% (v/v) to 2% (v/v) decreased the μ max from 0.1093 h−1 to 0.0715 h−1. Maximum achievable biodegradation rates of propanol and IPA were 6.11 × 10−3% (v/v) h−1 and 2.72 × 10−3% (v/v) h−1, respectively. Generation of acetone during IPA biodegradation commenced at 264 h and reached a maximum concentration of 0.4% (v/v). The results demonstrate the potential of mixed microbial consortia in the bioremediation of solvent-containing waste streams. Received: 14 December 1999 / Received revision: 3 April 2000 / Accepted: 7 April 2000  相似文献   

7.
Antarctic marine organisms are considered to have extremely limited ability to respond to environmental temperature change. However, here we show that the Antarctic notothenioid fish Pagothenia borchgrevinki is an exception to this theory. P. borchgrevinki was able to acclimate its resting metabolic rate and resting ventilation frequency after a 5°C rise in temperature. Acute exposure to 4°C resulted in an elevation in metabolic rate (57.8 ± 4.79 mg O2 kg−1 h−1) and resting ventilation rate (40.38 ± 1.61 breaths min−1) compared with fish at −1°C (metabolic rate 34.45 ± 3.12 mg O2 kg−1 h−1; ventilation rate 29.88 ± 3.72 breaths min−1). However, after a 1-month acclimation period, there was no significant difference in the metabolic rate (cold fish 29.52 ± 3.01; warm fish 31.13 ± 2.30 mg O2 kg−1 h−1), or the resting ventilation rate (cold fish 28.75 ± 0.98; warm fish 34.25 ± 2.28 breaths min−1) of cold and warm acclimated fish. Acclimation changes to the rate of oxygen consumption following exhaustive exercise were complex. The pattern of oxygen consumption during recovery from exhaustive exercise was not significantly different in either cold or warm acclimated fish.  相似文献   

8.
Four temperature treatments were studied in the climate controlled growth chambers of the Georgia Envirotron: 25/20, 30/25, 35/30, and 40/35 °C during 14/10 h light/dark cycle. For the first growth stage (V3-5), the highest net photosynthetic rate (P N) of sweet corn was found for the lowest temperature of 28–34 μmol m−2 s−1 while the P N for the highest temperature treatment was 50–60 % lower. We detected a gradual decline of about 1 P N unit per 1 °C increase in temperature. Maximum transpiration rate (E) fluctuated between 0.36 and 0.54 mm h−1 (≈5.0–6.5 mm d−1) for the high temperature treatment and the minimum E fluctuated between 0.25 and 0.36 mm h−1 (≈3.5–5.0 mm d−1) for the low temperature treatment. Cumulative CO2 fixation of the 40/35 °C treatment was 33.7 g m−2 d−1 and it increased by about 50 % as temperature declined. The corresponding water use efficiency (WUE) decreased from 14 to 5 g(CO2) kg−1(H2O) for the lowest and highest temperature treatments, respectively. Three main factors affected WUE, P N, and E of Zea: the high temperature which reduced P N, vapor pressure deficit (VPD) that was directly related to E but did not affect P N, and quasi stem conductance (QC) that was directly related to P N but did not affect E. As a result, WUE of the 25/20 °C temperature treatment was almost three times larger than that of 40/35 °C temperature treatment.  相似文献   

9.
Two reactors, initially operated at 14 and 23±1°C (RA and RB, respectively), were inoculated with a bacterial consortium enriched and acclimatized to the respective temperatures over 4 months. The biofilms, formed in the reactors, were studied using scanning electron microscopy, cultivation of the biofilm microflora, and physiological analysis of the isolates. Two bacteria able to mineralize chlorophenols under a large range of temperature (10–30°C) were isolated from the biofilm communities of reactors RA and RB and characterized as Alcaligenaceae bacterium R14C4 and Cupriavidus basilensis R25C6, respectively. When temperature was decreased by 10°C, the chlorophenols removal capacity was reduced from 51.6 to 22.8 mg l−1 h−1 in bioreactor RA (from 14 to 4°C) and from 59.3 to 34.7 mg l−1 h−1 in bioreactor RB (from 23±1 to 14°C). Fluorescence in situ hybridization (FISH) of the biofilm communities showed that, in all temperatures tested, the β-proteobacteria were the major bacterial community (35–47%) followed by the γ-proteobacteria (12.0–6.5%). When the temperature was decreased by 10°C, the proportions of γ-proteobacteria and Pseudomonas species increased significantly in both microbial communities.  相似文献   

10.
This study compared the cardiorespiratory responses of eight healthy women (mean age 30.25 years) to submaximal exercise on land (LTm) and water treadmills (WTm) in chest-deep water (Aquaciser). In addition, the effects of two different water temperatures were examined (28 and 36°C). Each exercise test consisted of three consecutive 5-min bouts at 3.5, 4.5 and 5.5 km · h−1. Oxygen consumption (O2) and heart rate (HR), measured using open-circuit spirometry and telemetry, respectively, increased linearly with increasing speed both in water and on land. At 3.5 km · h−1 O2 was similar across procedures [χ = 0.6 (0.05) l · min−1]. At 4.5 and 5.5 km · h−1 O2 was significantly higher in water than on land, but there was no temperature effect (WTm: 0.9 and 1.4, respectively; LTm: 0.8 and 0.9 l · min−1, respectively). HR was significantly higher in WTm at 36°C compared to WTm at 28°C at all speeds, and compared to LTm at 4.5 and 5.5 km · h−1 (P ≤ 0.003). The HR-O2 relationship showed that at a O2 of 0.9 l · min−1, HR was higher in water at 36°C (115 beats · min−1) than either on land (100 beats · min−1) or in water at 28°C (99 beats · min−1). The Borg scale of perceived exertion showed that walking in water at 4.5 and 5.5 km · h−1 was significantly harder than on land (WTm: 11.4 and 14, respectively; LTm: 9.9 and 11, respectively; P ≤ 0.001). These cardiorespiratory changes occurred despite a slower cadence in water (the mean difference at all speeds was 27 steps/min). Thus, walking in chest-deep water yields higher energy costs than walking at similar speeds on land. This data has implications for therapists working in hydrotherapy pools. Accepted: 3 September 1997  相似文献   

11.
The α-amylase of Streptomyces sp. IMD 2679 was subject to catabolite repression. Four different growth rates were achieved when the organism was grown at 40 °C and 55 °C in the presence and absence of cobalt, with an inverse relationship between α-amylase production and growth rate. Highest α-amylase yields (520 units/ml) were obtained at the lowest growth rate (0.062 h−1), at 40 °C in the absence of cobalt, while at the highest growth rate (0.35 h−1), at 55 °C in the presence of cobalt, α-amylase production was decreased to 150 units/ml. As growth rate increased, the rate of specific utilisation of the carbon source maltose also increased, from 46 to 123 μg maltose (mg biomass)−1 h−1. The pattern and levels of α-glucosidase (the enzyme degrading maltose) detected intracellularly in each case, indicate that growth rate effectively controls the rate of feeding of glucose to the cell, and thus catabolite repression. Received: 17 February 1997 / Received revision: 29 April 1997 / Accepted: 11 May 1997  相似文献   

12.
The thermal sensitivity of scope for activity was studied in the Antarctic nototheniid fish Pagothenia borchgrevinki. The scope for activity of P. borchgrevinki at 0°C was 189 mg O2 kg−1 h−1 (factorial scope 6.8) which is similar to that of temperate and tropical species at their environmental temperatures, providing no evidence for metabolic cold adaptation of maximum activity. The scope for activity increased to a maximum value of 266 mg O2 kg−1 h−1 (factorial scope 8.3) at 3°C and then decreased from 3 to 6°C. The thermal sensitivity of critical swimming speed was also investigated and followed a similar pattern to aerobic scope for activity, suggesting oxygen limitation of aerobic performance. Oxygen consumption rates and ventilation frequencies were monitored for 24 h after the swimming challenge and the recovery of both parameters to resting levels was rapid and independent of temperature.  相似文献   

13.
The thermophilic bacterium, Thermus species ATCC 27978, which is capable of aerobically degrading benzene, toluene, ethylbenzene, and the xylenes (BTEX), was cultured in 5-1 fermentors on a Castenholz salts-tryptone medium. This bacterium can be cultivated more conveniently at 45 °C, a temperature substantially lower than its optimal growth temperature (approx. 60 °C). Yet, the washed harvested cells from such cultures display the same initial BTEX-degrading activity as those when Thermus sp. is grown at its higher optimal temperature. Two bioreactor cultivation modes, batch and fed batch, were investigated. More biomass and more BTEX-degrading activity (assayed at 60 °C) were generated in fed-batch cultures than in the growth-limited batch cultures. The former yielded a biomass concentration of 2.5 g dry cell weight (DCW) l−1 and whole-cell degrading specific activities of 7.6 ± 1.3, 10.1 ± 1.9, 9.8 ± 2.1, 2.3 ± 0.5, and 4.6 ± 0.9 nmol degraded (mg DCW)−1 min−1 for benzene, toluene, ethylbenzene, m-xylene, and the o- plus p-xylenes (unresolved mixture), respectively. Although the formation of cellular BTEX-degrading activity is growth-associated, a slow to moderate specific growth rate of 0.02–0.07 h−1 favors the production of BTEX-degrading activity, while a high growth rate, of the order of 0.16 h−1, is detrimental to its production. The washed harvested Thermus sp. cells were capable of degrading BTEX over a broad range of thermophilic incubation temperatures, 45–77 °C. Received: 28 June 1996 / Received revision: 31 December 1996 / Accepted: 31 January 1997  相似文献   

14.
In this study, the kinetic behaviors between n-butyl acetate and composite bead were investigated. Both microbial growth rate and biochemical reaction rate would be inhibited with increasing average inlet concentration. The order of the inhibitive effect, which resulted from increased average inlet concentration for four operation temperatures, was 30>35>40>25 °C. Both microbial growth rate and biochemical reaction rate would be enhanced and inhibited with increasing operation temperature in the operation temperature ranges of 25 to 30 and 30 to 40 °C, respectively. The enhancing and inhibitive effects resulting from increased operation temperature were the most pronounced at the average inlet concentration of 200 ppm. The values of maximum reaction rate V m and half-saturation constant K s ranged from 0.011 to 0.047 g C h−1 kg−1 packed material and from 19.30 to 62.40 ppm, respectively. The zero-order kinetic with the diffusion rate limitation could be regarded as the most adequate biochemical reaction kinetic model. The values of maximum elimination capacity ranged from 0.51 to 0.20 g C h−1 kg−1 packed material, and the optimal maximum elimination capacity of biofilter occurred at the operation temperature of 30 °C.  相似文献   

15.
We improved the hydrogen yield from glucose using a genetically modified Escherichia coli. E. coli strain SR15 (ΔldhA, ΔfrdBC), in which glucose metabolism was directed to pyruvate formate lyase (PFL), was constructed. The hydrogen yield of wild-type strain of 1.08 mol/mol glucose, was enhanced to 1.82 mol/mol glucose in strain SR15. This figure is greater than 90 % of the theoretical hydrogen yield of facultative anaerobes (2.0 mol/mol glucose). Moreover, the specific hydrogen production rate of strain SR15 (13.4 mmol h−1 g−1 dry cell) was 1.4-fold higher than that of wild-type strain. In addition, the volumetric hydrogen production rate increased using the process where cells behaved as an effective catalyst. At 94.3 g dry cell/l, a productivity of 793 mmol h−1 l−1 (20.2 l h−1 l−1 at 37 °C) was achieved using SR15. The reported productivity substantially surpasses that of conventional biological hydrogen production processes and can be a trigger for practical applications.  相似文献   

16.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

17.
Two 60-day experiments were conducted to study the influence of photon flux density (PFD) and temperature on the attachment and development of Gloiopeltis tenax and Gloiopeltis furcata tetraspores. In the first experiment, tetraspores of the two Gloiopeltis species were incubated at five temperature ranges (8°C, 12°C, 16°C, 20°C, 24°C) under a constant PFD of 80 μmol photons m−2 s−1 with a photoperiod of 12:12. In a second experiment, tetraspores were incubated under five PFD gradients (30, 55, 80, 105, 130 μmol photons m−2 s−1) at a constant temperature of 16°C with a photoperiod of 12:12. Maximum density of attached tetraspores was observed at 16°C for both species. Maximum per cent of spore germinating into disc was recorded at 12–16°C for G. tenax and 8–12°C for G. furcata. Maximum per cent of discs producing erect axes for G. tenax and G. furcata were recorded at 24°C and 20°C, respectively. Light had no significant effect on tetraspore attachment and developing into disc, but it affected the growth, sprouting and survival of its discs. Under 30–55 μmol photons m−2 s−1, the discs of the two species of Gloiopeltis did not form thallus until the end of the experiment. Optimum PFD range for G. tenax discs was 80–105 μmol photons m−2 s−1, whilst it was 80–130 μmol photons m−2 s−1 for G. furcata. Results presented in this study are expected to assist the progress of artificial seeding of Gloiopeltis.  相似文献   

18.
We used tritium-labeled water to measure total body water, water influx (which approximated oxidative water production) and water efflux in free-flying tippler pigeons (Columba livia) during flights that lasted on average 4.2 h. At experimental air temperatures ranging from 18 to 27 °C, mean water efflux by evaporation and excretion [6.3 ± 1.3 (SD) ml · h−1, n = 14] exceeded water influx from oxidative water and inspired air (1.4 ± 0.7 ml · h−1, n = 14), and the birds dehydrated at 4.9 ± 0.9 ml · h−1. This was not significantly different from gravimetrically measured mass loss of 6.2 ± 2.1 g · h−1 (t = 1.902, n = 14, P>0.05). This flight-induced dehydration resulted in an increase in plasma osmolality of 4.3 ± 3.0 mosmol · kg−1 · h−1 during flights of 3–4 h. At 27 °C, the increase in plasma osmolality above pre-flight levels (ΔP osm = 7.6±4.29 mosmol · kg−1 · h−1, n = 6) was significantly higher than that at 18 °C (ΔP osm = 0.83±2.23 mosmol · kg−1 · h−1, (t = 3.43, n = 6, P < 0.05). Post-flight haematocrit values were on average 1.1% lower than pre-flight levels, suggesting plasma expansion. Water efflux values during free flight were within 9% of those in the one published field study (Gessaman et al. 1991), and within the range of values for net water loss determined from mass balance during wind tunnel experiments (Biesel and Nachtigall 1987). Our net water loss rates were substantially higher than those estimated by a simulation model (Carmi et al. 1992) suggesting some re-evaluation of the model assumptions is required. Accepted: 8 April 1997  相似文献   

19.
Oxygen consumption by ammocoetes of the lampreyGeotria australis in air   总被引:1,自引:0,他引:1  
 When covered by moistened lint-free gauze, the larvae (ammocoetes) of the lamprey Geotria australis survived, without apparent discomfort, for 4 days in water-saturated air at 10, 15 and 20 °C. In air, the mean standard rates of O2 consumption of medium to large ammocoetes of G. australis (xˉ=0.52 g) at 10, 15 and 20 °C were 14.5, 35.7 and 52.1 μl⋅g-1⋅h-1, respectively. At 15 °C, the slope of the relationship between log O2 consumption (μl O2⋅h-1) and log body weight for ammocoetes over a wide range in body weight was 0.987. The Q 10s for rate of O2 consumption between 10 and 15 °C, 15 and 20 °C and 10 and 20 °C were 4.9, 2.9 and 3.6, respectively. Our results and observations of the ammocoetes suggest that, when out of water, larval G. australis derives most of its O2 requirements from cutaneous respiration, particularly at lower temperatures. This would be facilitated by the small size and elongate shape (and thus a relatively high surface-to-volume ratio), low metabolic rate, thin dermis, extensive subdermal capillary network and high haemoglobin concentration of larval G. australis. Accepted: 28 March 1996  相似文献   

20.
Rhodotorula sp. produced a high yield of levanase (12.5 nkat/mL) in shake flasks in basal medium containing 1% maltose as the sole carbon source. Among the different carbon sources used, maltose was found to be the best for levanase production. The optimum temperature and pH for levanase production were 30°C and 6, respectively. In a batch reactor the enzyme productivity was higher (500 nkat L−1 h−1) than in shaken flasks (347 nkat L−1 h−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号