首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small mammals use plant species for gathering food resources and for shelter. Preferences for certain plant species are related to nutritional restrictions and behavioural patterns, which could be altered in the presence of an infectious disease. Several native small mammals are part of the wild cycle of the protozoan Trypanosoma cruzi, responsible for Chagas disease in humans. This is a vector‐borne disease transmitted by insects of the subfamily Triatominae. We examined the effect of T. cruzi infection status on the use and preference patterns of shrub species by two native rodent species: Octodon degus and Phyllotis darwini. This study was conducted during four sampling years (2010–2013) in a hyper‐endemic zone of Chagas disease located in a semiarid Mediterranean ecosystem. We captured individuals of 599 O. degus and 575 P. darwini (89% of the total captures), which were related to nine shrub species and examined for T. cruzi infection. In a community‐level analysis, infected and non‐infected O. degus used individual shrub species within the shrub community significantly non‐randomly relative to their availability; the same pattern was detected for non‐infected P. darwini individuals, whereas infected individuals used the shrub community according to the abundance of each shrub species. Examining individual preferences, both rodents showed a strong preference for Flourensia thurifera and Colliguaja odorifera regardless of their infection status. Preferences for specific shrub species were variable among years, showing a ‘core’ of preferred shrub species and variable levels of use of the remaining ones. Our results show that T. cruzi infection in wild small mammals can modify habitat use patterns and preferences for certain shrub species, probably affecting processes acting at community level.  相似文献   

2.
The aims of this study were to investigate the diet and relative abundance of fruit bats in a lowland Malaysian rain forest and to test the hypothesis that the local assemblage structure of fruit bats varies significantly over time in relation to the availability of food. In total, 352 fruit bats of eight species were captured during 72,306 m2 mist‐net hours of sampling between February 1996 and September 1999. Three species of fruit bats (Balionycteris maculita, Chironax melanocephalus, and Cynopterus brachyotis) that fed on a wide range of “steady state” and “big bang” food resources were captured continuously throughout the study period, with no significant variation in capture rates over time. In contrast, five species that fed exclusively or almost exclusively on “big bang” food resources were sampled intermittently, with significant temporal variation in the capture rates of two species (Cynopterus horsfieldi and Megaerops ecaudatus). Significant variation in the capture rates of the remaining three species (Dyacopterus spadiceus, Eonycteris spelaea, and Rousettus amplexicaudatus) could not be detected due to small sample sizes. Since ephemeral “big bang” food resources were only sporadically available within the study area and were associated with large canopy trees and strangler figs, these results suggest that food abundance, or the availability of specific food items, may be important factors limiting local fruit bat species diversity in old‐growth Paleotropical rain forest. Thus, only three fruit bat species were locally resident within the forest throughout the study period. Therefore, further studies on the ranging behavior and habitat requirements of Malaysian fruit bats are required to assess the adequacy of existing reserves and protected areas.  相似文献   

3.
4.
Abstract Patch‐burning is frequently advocated as a management tool to enhance the biodiversity and pasture values of spinifex (Triodia) grasslands. In this study we compare the capture rates of small mammals in habitats regenerating shortly after fire (aged 1–5 years) and in long‐unburnt habitats (aged >25 years). To unravel the effects of temporally and spatially variable rainfall on capture rates, the study was replicated at three locations spaced over 50 km apart that experience different rainfall regimes. Ten species of small mammals were captured over the course of the study, between October 1999 and June 2001. Pseudomys desertor showed a strong preference for long‐unburnt habitats. Notomys alexis, Sminthopsis youngsoni and Sminthopsis hirtipes showed some preferences for regenerating habitats, but these were not consistent throughout the study. Factors indicative of temporal and spatial variation in rainfall, time and site had important effects on capture rates. High rainfalls associated with the La Niña phase of the El Niño/Southern Oscillation in 2000 increased seed production and prompted eruptions of rodent species and the carnivorous Dasycercus cristicauda. The greatest numbers of captures were made at the sites that received the highest rainfalls. We conclude that patch‐burning regimes do not benefit small mammals directly, but are likely to increase the resilience of ‘fire‐sensitive’ species that are dependent on dense spinifex by reducing the extent of wildfires.  相似文献   

5.
Australian arid zone mammal species within the Critical Weight Range (CWR) of 35 g–5.5 kg have suffered disproportionately in the global epidemic of contemporary faunal extinctions. CWR extinctions have been attributed largely to the effects of introduced or invasive mammals; however, the impact of these threatening processes on smaller mammals and reptiles is less clear. The change in small mammal and reptile assemblages after the removal of rabbits, cats and foxes was studied over a 6‐year period in a landscape‐scale exclosure in the Australian arid zone. Rodents, particularly Notomys alexis and Pseudomys bolami, increased to 15 times higher inside the feral‐proof Arid Recovery Reserve compared with outside sites, where rabbits, cats and foxes were still present. Predation by cats was thought to exert the greatest influence on rodent numbers owing to the maintenance of the disparity in rodent responses through dry years and the differences in dietary preferences between rabbits and P. bolami. The presence of introduced Mus domesticus or medium‐sized re‐introduced mammal species did not significantly affect resident small mammal or reptile abundance. Abundance of most dasyurids and small lizards did not change significantly after the removal of feral animals although reductions in gecko populations inside the reserve may be attributable to second order trophic interactions or subtle changes in vegetation structure and cover. This study suggests that populations of rodent species in northern South Australia below the CWR may also be significantly affected by introduced cats, foxes and/or rabbits and that a taxa specific model of Australian mammal decline may be more accurate than one based on body weight.  相似文献   

6.
Theoretical models of species coexistence between desert mammals have generally been based on a combination of food and microhabitat selection by granivorous rodents. Although these models are applicable in various deserts of the world, they cannot explain resource use by mammals in Neotropical deserts. The present study examines diet composition in a mammal assemblage in the Monte desert, Argentina. The results show that two main strategies are used by these mammals: medium‐sized species (hystricognath rodents: Dolichotis patagonum, Lagostomus maximus, Microcavia australis and Galea musteloides; and an exotic lagomorph: Lepus europaeus) are herbivores, whereas small‐sized species (a marsupial: Thylamys pusillus; and sigmodontine rodents: Graomys griseoflavus, Akodon molinae, Calomys musculinus, Eligmodontia typus) are omnivorous. Small mammals also show a tendency towards granivory (C. musculinus), insectivory (A. molinae and T. pusillus) and folivory (G. griseoflavus).  相似文献   

7.
Food habits of three sympatric carnivore mammals in the Tsushima islands of Japan were studied during 1986–91. Scats of the Tsushima marten (n=1236), the Siberian weasel (n=218) and the Tsushima leopard cat (n=350) were collected monthly and the food items were determined by scat contents analysis. Marten was omnivorous showing a high level of diversity of food throughout the year. The important foods for marten were fruits and berries from spring to autumn, insects in summer and autumn and small mammals all year round. Leopard cat preferred to hunt wood/mice and birds, and remained a flesh meat specialist throughout the year. Weasel was intermediate between marten and leopard cat, but was slightly biased towards the flesh meat eater. The three carnivores do not compete against one another for food, except for small rodents. A conflict for food between leopard cat and weasel was suggested to be more intense than that of other combinations based on diet overlapping. Marten may be characterized as an opportunistic generalist. When interspecific competitors existed, or human disturbance to the habitat occurred, the preferential flexibility of the marten to alternative food resources might become more advantageous than the other two species.  相似文献   

8.
Much of the remaining “forest” vegetation in eastern Chiapas, Mexico is managed for coffee production. In this region coffee is grown under either the canopy of natural forest or under a planted canopy dominated by Inga spp. Despite the large differences in diversity of dominant plant species, both planted and rustic shade coffee plantations support a high overall diversity of bird species; we recorded approximately 105 species in each plantation type on fixed radius point counts. We accumulated a combined species list of 180 species on repeatedly surveyed transects through both coffee plantation types. These values are exceeded regionally only by moist tropical forest. Of the habitats surveyed, shade coffee was second only to acacia groves in the abundance and diversity of Nearctic migrants. The two plantation types have similar bird species lists and both are similar in composition to the dominant woodland—mixed pine-oak. Both types of shade coffee plantation habitats differ from other local habitats in supporting highly seasonal bird populations. Survey numbers almost double during the dry season—an increase that is found in omnivorous migrants and omnivorous, frugivorous, and nectarivorous resident species. Particularly large influxes were found for Tennessee warblers (Vermivora peregrina) and northern orioles (Icterus galbula) in Inga dominated plantations.  相似文献   

9.
The effects of vertebrate predation have been monitored since 1989 on 16 replicated 0.56 ha study plots in a semiarid thorn scrub community in north-central Chile. Using fences of different heights with and without holes and suspended game netting to alter principal predator (foxes and raptors) and large rodent herbivore (Octodon degus) access, four grids each have been assigned to the following treatments: 1) low fencing and holes allowing free access of predators and small mammals; 2) low fencing without holes to exclude degus only; 3) high fencing and netting with holes to exclude predators only; and 4) high fencing and netting without holes to exclude predators and degus. Small mammal population censuses are conducted monthly using mark-recapture techniques. Degu population trends during 1989 and 1990 showed strongly but nonsignificantly lower numbers in control plots during months when densities were characteristically low (September–November) for this seasonally reproductive species; since March 1991, differences have become persistent and increasingly significant. Predators appear to have greater numerical effects when their prey populations are low. Survival times of degus, particularly established adults, were significantly longer in predator exclusion grids during the 2 1/2 years of observation; thus, predation also affects prey population structure.  相似文献   

10.
The quantity component of effectiveness of seed dispersal by animals is determined by two events: fruit removal (intensity of the interaction) and animal visitation to the plant (frequency of interactions). Considering dispersal of Prosopis flexuosa seeds as case study, this work aimed at investigating the strengths and weaknesses of the two methods for assessing the quantity component of seed dispersal effectiveness: exclosures and camera traps. Prosopis fruits were offered for 48 hr. Exclosure treatments were performed using two types of wire‐screen cages, allowing access to ants (“closed exclosure”) and to small mammals up to 100 g (“open to small mammals”), and a treatment without exclosure (“open to all removers”). The camera trapping experiment was carried out using vertically oriented cameras placed at approximately 1.80 m height and focused on the fruits. The cameras were set in “motion detect mode,” taking series of three consecutive photographs. The exclosures largely allowed estimation of fruit removal by size‐based groups of animals, but did not provide information on species identity. In contrast, camera traps were able to identify all visitors to species level and could not only determine the number of visits by each species but also the proportion of visits, which resulted in removal of fruits. Camera trapping allowed discriminating among small mammals playing different roles, without underestimating fruit removal by scatter‐hoarding species. The quality of estimation of the quantity component of seed dispersal is remarkably better when the camera trapping method is applied. Additional information obtained, such as activity patterns of visitors, can contribute to a better understanding of the seed dispersal process.  相似文献   

11.
Invasive plants that most threaten biodiversity are those that rapidly form a monospecific stand, like the clonal grass, Phalaris arundinacea. Understanding complex and potentially interacting factors that are common in urban and agricultural landscapes and underlie rapid invasions requires an experimental, factorial approach. We tested the effects of flooding and nutrient and sediment additions (3 × 3 × 3 = 27 treatments, plus a control with no additions) on invasion of Phalaris into mesocosms containing wet prairie vegetation. We discovered a three-step invasion and degradation process: (1) initially, resident native species declined with prolonged flooding and sediment additions, and (2) prolonged flooding, sedimentation, and nutrients accelerated Phalaris aboveground growth; biomass rose to 430 times that of the control within just two growing seasons. The dramatic expansion of Phalaris in the second year resulted in the formation of monospecific stands in over one-third of the treatments, as (3) native species continued their decline in year 2. Disturbances acted alone and in combination to make the resident wetland community more invasible and Phalaris more aggressive, leading to monospecific stands. Yet, Phalaris did not always “win”: under the least disturbed conditions, the resident plant canopy remained dense and vigorous and Phalaris remained small. When anthropogenic disturbances coincide with increases in the gross supply of resources, more tolerant, fast-growing, and morphologically plastic plants like Phalaris can invade very rapidly. The fluctuating resource hypothesis should thus be refined to consider the role of interacting disturbances in facilitating invasions.  相似文献   

12.
Variation in the diet of the Pacific sand lance Ammodytes hexapterus was examined in three years (2009–2011) at four sites in British Columbia, Canada. There were 12 major taxa of prey in diets, eight of which were Crustacea, with copepods being by far the dominant taxon in all 12 site‐years. Of the 22 copepod taxa recorded, only Calanus marshallae and Pseudocalanus spp. occurred in all collections, and these two calanoid species dominated diets in terms of frequency of occurrence and total numbers of prey (Pseudocalanus spp. in most collections), and total prey biomass (C. marshallae in all collections). Based on an index of relative importance, C. marshallae was the primary prey at the two southerly sampling sites (Pine and Triangle Islands) and Pseudocalanus spp. at the two northerly sites (Lucy Island and S'G ang Gwaay). Based on an index of dietary overlap, the species composition of the copepod component of A. hexapterus diets overlapped very strongly at the northerly and the southerly pairs of sites in both a cold‐water La Niña year (2009) and a warm‐water El Niño year (2010), but overall there was more homogeneity amongst all four sites in the La Niña year.  相似文献   

13.
Although long‐distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black‐throated blue warbler (Setophaga caerulescens), a double‐brooded long‐distance migrant, we used Pradel models to analyze 25 years of mark–recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late‐season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black‐throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species.  相似文献   

14.
1. Antipredator behaviour by the facultative planktivorous fish species roach (Rutilus rutilus), perch (Perca fluviatilis) and rudd (Scardinius erythrophthalmus) was studied in a multi‐year whole‐lake experiment to evaluate species‐specific behavioural and numerical responses to the stocking of pikeperch (Sander lucioperca), a predator with different foraging behaviour than the resident predators large perch (P. fluviatilis) and pike (Esox lucius). 2. Behavioural responses to pikeperch varied greatly during the night, ranging from reduced activity (roach and small perch) and a shift in habitat (roach), to no change in the habitat use and activity of rudd. The differing responses of the different planktivorous prey species highlight the potential variation in behavioural response to predation risk from species of similar vulnerability. 3. These differences had profound effects on fitness; the density of species that exhibited an antipredator response declined only slightly (roach) or even increased (small perch), whereas the density of the species that did not exhibit an antipredator response (rudd) decreased dramatically (by more than 80%). 4. The maladaptive behaviour of rudd can be explained by a ‘behavioural syndrome’, i.e. the interdependence of behaviours expressed in different contexts (feeding activity, antipredator) across different situations (different densities of predators). 5. Our study extends previous studies, that have typically been limited to more controlled situations, by illustrating the variability in intensity of phenotypic responses to predators, and the consequences for population density, in a large whole‐lake setting.  相似文献   

15.
Fire is a key ecological process influencing the population dynamics of small mammals. Whilst shifting competitive advantage amongst small mammal species following a single fire event is well‐documented, there has been little investigation of the potential influence of fire frequency on small mammal interspecific interactions. In this study, we investigated the effect of fire frequency on the abundance of two small dasyurid mammals, Antechinus stuartii and A. flavipes, which occur sympatrically in some parts of their range. The two antechinus species are known to have different habitat preferences, so it is possible that fire regimes may promote their coexistence in areas of sympatry by altering vegetation structure. To investigate this possibility, we estimated the abundance of both species using replicate sites which differed in the number of times burnt (1–4) during the last four decades, but with identical time‐since‐fire. Proportionally, we captured greater numbers of A. stuartii in less frequently burnt sites and greater numbers of A. flavipes in more‐frequently burnt sites. Hence, fire may mediate niche‐separation between these two species. To clarify further this pattern of response to fire frequency, we investigated which structural habitat variables differed between fire frequencies, and compared antechinus abundances with structural vegetation characteristics. We found a trend for lower ground cover density under higher fire frequencies. This offers one potential explanation of the patterns of abundance that we observed. Our study provided insights into the complexities of small mammal responses to fire, and strongly suggests that fire could mediate competitive interactions between species.  相似文献   

16.
Fruit bodies of hypogeous fungi are an important food source for many small mammals and are consumed by larger mammals as well. A controversial hypothesis that prescribed burning increases fruiting of certain hypogeous fungi based on observations in Tasmania was tested in the Australian Capital Territory to determine if it applied in a quite different habitat. Ten pairs of plots, burnt and nonburnt, were established at each of two sites prescribe-burnt in May 1999. When sampled in early July, after autumn rains had initiated the fungal fruiting season, species richness and numbers of fruit bodies on the burnt plots were extremely low: most plots produced none at all. Both species richness and fruit body numbers were simultaneously high on nonburnt plots. One of the sites was resampled a year after the initial sampling. At that time species richness and fruit body abundance were still significantly less on burnt plots than on nonburnt, but a strong trend towards fungal recovery on the burnt plots was evident. This was particularly so when numbers of fruit bodies of one species, the hypogeous agaric Dermocybe globuliformis, were removed from the analysis. This species strongly dominated the nonburnt plots but was absent from burnt plots in both years. The trend towards recovery of fruit body abundance in the burnt plots one year after the burn was much more pronounced with exclusion of the Dermocybe data. The Tasmanian-based hypothesis was based mostly on the fruiting of two fire-adapted species in the Mesophelliaceae. Neither species occurred on our plots. Accordingly, the results and conclusions of the Tasmanian study cannot be extrapolated to other habitats without extensive additional study. Implications for management of habitat for fungi and the animals that rely on the fungi as a food source are discussed.  相似文献   

17.
Abstract

Boutin et al. (2006) claimed that American and Eurasian red squirrels use an unknown environmental cue to anticipate the availability of the abundant food of an autumn seed mast, and produce more young than usual in the previous spring and summer. But these small mammals need increased supplies of protein to produce and support young, therefore they must have had access to some other protein‐rich food that was available before the mast was ripe. There are other small mammalian seed‐eaters that increase their reproductive output ahead of the maturation of a seed mast. It seems likely that, in each case, females are able to produce extra young in advance because they eat the amino acid‐rich inflorescences and unripe seeds of the mast and/or larval insects that also increase their numbers in the spring of a mast year by eating the same enriched plant food.  相似文献   

18.
South America currently possesses a high diversity of canids, comprising mainly small to medium‐sized omnivorous species, but in the Pleistocene there were large hypercarnivorous taxa that were assigned to Protocyon spp., Theriodictis spp., Canis gezi, Canis nehringi and Canis dirus. These fossils have never been included in phylogenies based on quantitative cladistics, but hand‐constructed cladograms published in the 1980s included some of them in the South American canine clade and others in the Canis clade. In this work, the phylogenetic position of the large extinct South American canids was studied using a large sample of living and extinct canids, as well as different sources of characters (e.g. DNA and 133 osteological characters). The phylogenetic analysis corroborates the inclusion of Theriodictis and Protocyon in the “South American clade”, where Cgezi is also included. In addition, the position of C. dirus as a highly derived Canis species is confirmed. The simultaneous analysis supports hypercarnivory having arisen at least three times in Caninae and once in the “South American clade”. The combination of the phylogenetic analyses, the fossil record and divergence dates estimated in previous works suggests that at least three or four independent lineages of the “South American clade” invaded South America after the establishment of the Panama bridge around 3 million years ago, plus other events corresponding to the immigration of Urocyon and Canis dirus.
© The Willi Hennig Society 2009.  相似文献   

19.
While few species introduced into a new environment become invasive, those that do provide critical information on ecological mechanisms that determine invasions success and the evolutionary responses that follow invasion. Aedes albopictus (the Asian tiger mosquito) was introduced into the naturalized range of Aedes aegypti (the yellow fever mosquito) in the United States in the mid‐1980s, resulting in the displacement of A. aegypti in much of the south‐eastern United States. The rapid displacement was likely due to the superior competitive ability of A. albopictus as larvae and asymmetric mating interference competition, in which male A. albopictus mate with and sterilize A. aegypti females, a process called “satyrization.” The goal of this study was to examine the genomic responses of a resident species to an invasive species in which the mechanism of character displacement is understood. We used double‐digest restriction enzyme DNA sequencing (ddRADseq) to analyse outlier loci between selected and control lines of laboratory‐reared A. aegypti females from two populations (Tucson, AZ and Key West, Florida, USA), and individual females classified as either “resisted” or “mated with” A. albopictus males via mating trials of wild‐derived females from four populations in Florida. We found significant outlier loci in comparing selected and control lines and between mated and nonmated A. aegypti females in the laboratory and wild‐derived populations, respectively. We found overlap in specific outlier loci between different source populations that support consistent genomic signatures of selection within A. aegypti. Our results point to regions of the A. aegypti genome and potential candidate genes that may be involved in mating behaviour, and specifically in avoiding interspecific mating choices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号