首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The microscopic organization and ultrastructure of the submandibular muscle of 10 species of Amphibia were compared. Among other fibre features the diameter of fibres, their content of mitochondria and fat, organization of sarcomeres: morphology of Z-line, M-band and sarcoplasmic reticulum were taken into consideration and 4 main types of muscle fibres were distinguished. They correspond to tonic (slow) and phasic (red, white and intermediate) ones. Slight variety of fibre morphology and of fibre elements among the examined species was found. Special attention to the variety of fibre morphology among the established types has been paid and the existence of continuous "spectrum" of fibres was suggested. The correlation of frequency of fibres of particular types with the body size, gular oscillation frequency, and some other characteristics of the submandibular muscle in the examined species was discussed. Also the zonal arrangement of muscle according to the fibre types, as well as possible dynamic nature of muscle fibres were emphasised.  相似文献   

7.
8.
Mechanical properties of isolated living muscle spindles from Xenopus laevis were examined in order to determine their role in sensory transduction. The reticular zone of the intrafusal muscle fibers was identified microscopically by: (1) its position beneath the sensory endings, (2) its length, 50–100 μm, (3) its extension during intrafusal muscle contraction, and (4) its coarse striations with a period of about 1.5 times the normal sarcomere length. The reticular zone in the passive muscle spindle did not extend until the spindle was stretched to about 1.05–1.1 its maximal length in the animal (L m ). Evidence was obtained that the absence of extension of the reticular zone at normal muscle lengths was due to the presence of the spindle capsule which acted as a stiff element in parallel with the sensory region. At those lengths at which the reticular zone did extend (> L m ), no rate — sensitive mechanical properties were detected in response to step and ramp extensions. The sensory discharge of the spindle showed no dynamic transient in response to ramp extensions if the reticular zone were not extended. During extension of the reticular zone a dynamic sensory transient appeared. It is concluded that current notions on the mechanical origin of the rate — sensitive properties of the sensory discharge of the muscle spindle do not apply to Xenopus laevis. In addition, it is not likely that the passive spindle in this animal is a sensitive stretch receptor.  相似文献   

9.
Following a series of eccentric contractions, that is stretching of the muscle while generating active tension, the length-tension relationship of isolated amphibian muscle has been shown to shift towards longer muscle lengths (Katz 1939; Wood et al. 1993). Here we report observations of electrically stimulated ankle extensor muscles of nine human subjects, demonstrating a similar shift in optimum angle for torque generation [3.9 (1.5)°] following exercise on an inclined treadmill that involved eccentric contractions in one leg. (All values are means with the SEMs in parentheses.) The shift in the unexercised, control leg was significantly less [mean 0.4 (0.7)°P < 0.05]. Correlated with this shift was a drop in torque [25.1 (5.6)% for the experimental leg; 1.6 (0.7)% for the control leg, P < 0.002]. Optimum angles returned to pre-exercise values by 2 days post-exercise, while torque took a week to recover. A similar shift in optimum length [12 (1.3)% of rest length] was obtained for five toad (Bufo marinus) sartorius muscles subjected to 25 eccentric contractions. Isometrically contracted control muscles showed a smaller shift [3.5 (1.6)%, n = 5]. Accompanying the shift was a drop in tension of 46 (3)% after the eccentric contractions [control isometric, 23 (6)%, P < 0.0001]. By 5 h after the eccentric contractions the shift had returned to control values, while tension had not recovered. When viewed with an electron microscope, sartorius muscles fixed immediately after the eccentric contractions exhibited many small, and a few larger, regions of myofilament disruption. In muscles fixed 5 h after the contractions, no small regions of disruption were visible, and the number of large regions was no greater than in those muscles fixed immediately after the eccentric contractions. These disruptions are interpreted as the cause of the shift in length-tension relationship. Accepted: 9 January 1997  相似文献   

10.
11.
12.
The capillary bed in denervated muscle   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
Tropomyosin is a protein that controls the interactions of actin and myosin as a part of the regulation of muscle contraction. The 420 Å long α-helical coiled-coil molecules form long filaments, both in muscle and in crystals. The x-ray diffraction data from tropomyosin crystals have indicated large scale motions of the filaments that can be related to the inherent mechanical properties of the molecule, and by extension, to the role of tropomyosin in the cooperative activation of the thin filaments of muscle. Diffuse scattering analysis has provided information about the amplitudes of the motions that has been used to calculate the intrinsic flexibility of the molecule. It can then be shown that each tropomyosin molecule by itself can only mediate interactions of the nearest-neighboring tropomyosin molecules along the filament. The repeating nature of the thin filament, however, allows the entire filament to activate cooperatively. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The mechanical properties of the metacoxal muscle, 177d, in the cockroach, Periplaneta americana, was investigated. The muscle exhibited a mean resting tension of 2.6 ± 1.3g SD. Neurally evoked tension summed with the resting tension and the relaxation phase of the evoked tension varied from less than 1 s to several minutes. This residual tension varied not only in duration but also in amplitude. Stimulation of inhibitory axons increased the rate of relaxation and thereby abolished the residual tension. However, inhibitory stimulation never reduced the resting tension. Stimulation of the main leg nerve at several times the threshold of the inhibitory axons could evoke residual tension. Recording of synaptic potentials from the two histochemically different fiber types (dorsal and ventral groups) revealed large hyperpolarizations in the ventral fibers and decreased duration and amplitude of excitatory potentials in the dorsal fibers. These results suggest that there are a variety of ways in which tension can be evoked, maintained, and controlled in these muscles.  相似文献   

16.
Smooth muscle has the unique ability to adapt easily and quickly to length changes without compromising its ability to generate force. This ability is referred to as mechanical plasticity and is now considered to be an important aspect of smooth muscle that affects both its contractile and relaxation behaviour. It is therefore important to incorporate knowledge of plasticity into further studies of smooth muscle behaviour. It is also important that future studies be focused on deciphering the mechanism of smooth muscle length adaptation and plasticity. This review outlines some of the proposed mechanisms determining plasticity. However, it should be said that there are other proposed mechanisms not touched upon here, which may be equally as important. This review also focuses on the relevance of smooth muscle plasticity in asthma, but it is important to remember that there are other places where smooth muscle plasticity may play an equally important role.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号