首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
B. Oliver  D. Pauli    A. P. Mahowald 《Genetics》1990,125(3):535-550
Zygotically contributed ovo gene product is required for the survival of female germ cells in Drosophila melanogaster. Trans-allelic combinations of weak and dominant ovo mutations (ovoD) result in viable germ cells that appear to be partially transformed from female to male sexual identity. The ovoD2 mutation is partially suppressed by many Sex-lethal alleles that affect the soma, while those that affect only the germ line fail to interact with ovoD2. One of two loss-of-function ovo alleles is suppressed by a loss-of-function Sex-lethal allele. Because ovo mutations are germ line dependent, it is likely that ovo is suppressed by way of communication between the somatic and germ lines. A loss-of-function allele of ovo is epistatic to germ line dependent mutations in Sex-lethal. The germ line dependent sex determination mutation, sans fille, and ovoD mutations show a dominant synergistic interaction resulting in partial transformation of germ line sexual identity. The ovo locus appears to be involved in germ line sex determination and is linked in some manner to sex determination in the soma.  相似文献   

2.
We have analyzed the mechanism of sex determination in the germ line of Drosophila by manipulating three parameters: (1) the ratio of X-chromosomes to sets of autosomes (X:A); (2) the state of activity of the gene Sex-lethal (Sxl), and (3) the sex of the gonadal soma. To this end, animals with a ratio of 2X:2A and 2X:3A were sexually transformed into pseudomales by mutations at the sex-determining genes Sxl (Sex-lethal), tra (transformer), tra-2 (transformer-2), or dsx (double-sex). Animals with the karyotype 2X;3A were also transformed into pseudofemales by the constitutive mutation SxlM1. The sexual phenotype of the gonads and of the germ cells was assessed by phase-contrast microscopy. Confirming the conclusions of Steinmann-Zwicky et al. (Cell 57, 157, 1989), we found that all three parameters affect sex determination in germ cells. In contrast to the soma in which sex determination is completely cell-autonomous, sex determination in the germ line has a non-autonomous component inasmuch as the sex of the soma can influence the sexual pathway of the germ cells. Somatic induction has a clear effect on 2X;2A germ cells that carry a Sxl+ allele. These cells, which form eggs in an ovary, can enter spermatogenesis in testes. Mutations that cause partial loss of function or gain of function of Sxl thwart somatic induction and, independently of the sex of the soma, dictate spermatogenesis or oogenesis, respectively. Somatic induction has a much weaker effect on 2X;3A germ cells. This ratio is essentially a male signal for germ cells which consistently enter spermatogenesis in testes, even when they carry SxlM1. In a female soma, however, SxlM1 enables the 2X;3A germ cells to form almost normal eggs. Our results show that sex determination in the germ line is more complex than in the soma. They provide further evidence that the state of Sxl, the key gene for sex determination and dosage compensation in the soma, also determines the sex of the germ cells, and that, in the germ line, the state of activity of Sxl is regulated not only by the X:A ratio, but also by somatic inductive stimuli.  相似文献   

3.
To investigate the mechanism of sex determination in the germ line, we analyzed the fate of XY germ cells in ovaries, and the fate of XX germ cells in testes. In ovaries, germ cells developed according to their X:A ratio, i.e., XX cells underwent oogenesis, XY cells formed spermatocytes. In testes, however, XY and XX germ cells entered the spermatogenic pathway. Thus, to determine their sex, the germ cells of Drosophila have cell-autonomous genetic information, and XX cells respond to inductive signals of the soma. Results obtained with amorphic and constitutive mutations of Sxl show that both the genetic and the somatic signals act through Sxl to achieve sex determination in germ cells.  相似文献   

4.
Sex determination is regulated very differently in the soma vs. the germline, yet both processes are critical for the creation of the male and female gametes. In general, the soma plays an essential role in regulating sexual identity of the germline. However, in some species, such as Drosophila and mouse, the sex chromosome constitution of the germ cells makes an autonomous contribution to germline sexual development. Here we review how the soma and germline cooperate to determine germline sexual identity for some important model systems, the fly, the worm and the mouse, and discuss some of the implications of 'dual control' (soma plus germline) as compared to species where germline sex is dictated only by the surrounding soma.  相似文献   

5.
6.
Sex chromosomes are advantageous to mammals, allowing them to adopt a genetic rather than environmental sex determination system. However, sex chromosome evolution also carries a burden, because it results in an imbalance in gene dosage between females (XX) and males (XY). This imbalance is resolved by X dosage compensation, which comprises both X chromosome inactivation and X chromosome upregulation. X dosage compensation has been well characterized in the soma, but not in the germ line. Germ cells face a special challenge, because genome wide reprogramming erases epigenetic marks responsible for maintaining the X dosage compensated state. Here we explain how evolution has influenced the gene content and germ line specialization of the mammalian sex chromosomes. We discuss new research uncovering unusual X dosage compensation states in germ cells, which we postulate influence sexual dimorphisms in germ line development and cause infertility in individuals with sex chromosome aneuploidy.  相似文献   

7.
8.
B. Oliver  N. Perrimon    A. P. Mahowald 《Genetics》1988,120(1):159-171
Females homozygous for sans fille1621 (= fs(1)1621) have an abnormal germ line. Instead of producing eggs, the germ-line cells proliferate forming ovarian tumors or excessive numbers of nurse cells. The Sex-lethal gene product(s) regulate the branch point of the dosage compensation and sex determination pathways in the soma. The role of Sex-lethal in the germ line is not clear but the germ line of females homozygous for female sterile Sex-lethal alleles or germ-line clones of loss-of-function alleles are characterized by ovarian tumors. Females heterozygous for sans fille1621 or Sex-lethal are phenotypically wild type with respect to viability and fertility but females trans-heterozygous for sans fille1621 and Sex-lethal show ovarian tumors, somatic sexual transformations, and greatly reduced viability.  相似文献   

9.
The Arvicolidae is a widely distributed rodent group with several interesting characteristics in their sex chromosomes. Here, we summarize the actual knowledge of some of these characteristics. This mammalian group has species with abnormal sex determination systems. In fact, some species present the same karyotype in both males and females, with total absence of a Y chromosome, and hence of SRY and ZFY genes. Other species present fertile, sex-reversed XY females, generally due to mutations affecting X chromosomes. Furthermore, in Microtus oregoni males and females are gonosomic mosaic (the females are XO in the soma and XX in the germ cells, while the males are XY in the soma and OY in the germ cells). Regarding sex chromosomes, some species present enlarged (giant) sex chromosomes because of the presence of large blocks of constitutive heterochromatin, which have been demonstrated to be highly heterogeneous. Furthermore, we also consider the alterations affecting composition and localization of sex-linked genes or repeated sequences. Finally, this rodent group includes species with synaptic and asynaptic sex chromosomes. In fact, several species with asynaptic sex chromosomes have been described. It is interesting to note that within the genus Microtus both types of sex chromosomes are present.  相似文献   

10.
11.
We have isolated nine gain-of-function (gf) alleles of the sex-determination gene fem-3 as suppressors of feminizing mutations in fem-1 and fem-2. The wild-type fem-3 gene is needed for spermatogenesis in XX self-fertilizing hermaphrodites and for male development in both soma and germ line of XO animals. Loss-of-function alleles of fem-3 transform XX and XO animals into females (spermless hermaphrodites). In contrast, fem-3(gf) alleles masculinize only one tissue, the hermaphrodite germ line. Thus, XX fem-3(gf) mutant animals have a normal hermaphrodite soma, but the germ line produces a vast excess of sperm and no oocytes. All nine fem-3(gf) alleles are temperature sensitive. The temperature-sensitive period is from late L4 to early adult, a period just preceding the first signs of oogenesis. The finding of gain-of-function alleles which confer a phenotype opposite to that of loss-of-function alleles supports the idea that fem-3 plays a critical role in germ-line sex determination. Furthermore, the germ-line specificity of the fem-3(gf) mutant phenotype and the late temperature-sensitive period suggest that, in the wild-type XX hermaphrodite, fem-3 is negatively regulated so that the hermaphrodite stops making sperm and starts making oocytes. Temperature shift experiments also show that, in the germ line, sexual commitment appears to be a continuing process. Spermatogenesis can resume even after oogenesis has begun, and oogenesis can be initiated much later than normal.  相似文献   

12.
韩嵘  尚克刚 《遗传》2002,24(1):77-81
本文综述了近年来小鼠胚胎发育过程中生殖细胞的起源、迁移与增殖、性别分化及其基因组修饰等方面的研究进展。小鼠生殖细胞在7~7.5dpc时由原始生殖细胞(PGC)演变而来,至12.5dpc时PGC全部迁移进入生殖嵴,到13.5dpc时停止分裂。Steel/c-kit信号途径在PGC迁移过程中起重要作用。生殖细胞的性别主要是由生殖腺中体细胞的微环境决定的。Y染色体上存在精子形成所必需的基因。生殖细胞的全基因组范围的重新甲基化晚于胚胎体细胞的重新甲基化,到18.5dpc时才完成。雌性生殖细胞的X染色体重新活化在14.5~15.5dpc时完成,并且与生殖嵴的性别分化无关。 Abstract:This paper reviewed the recent progress of the origin,migration and proliferation,sex determination,and genomic modification of murine germ cells during its embryonic development. Murine germ cells originate from primordial germ cells at about 7~7.5dpc. Then PGCs migrated into germinal ridge at about 12.5dpc during which Steel/c-kit signal pathway plays important roles and stopped division at 13.5dpc. The sex of germ cells was mainly determined by the soma microenvironment in the gonad. And there are essential genes for sperm formation on the Y chromosome. The de novo methylation of murine germ cells was much later than soma cells and was completed at about 18.5dpc. The X chromosome reactivation of female germ cells was finished at about 14.5~15.5dpc which was independent of sexual differentiation of germinal ridge.  相似文献   

13.
In Drosophila, females require products of the gene Sxl for sex determination, dosage compensation and fertility. I show here that the X-chromosomal gene liz, located in 4F1 to 4F11 and previously called fs(1)1621, provides maternal and zygotic functions necessary for Sxl activity in germ line and soma. In XX animals, the mutation SxlM1 which was reported to express the female-specific functions of Sxl constitutively can rescue all phenotypes resulting from lack of liz product. XY animals carrying SxlM1 and lacking maternal or zygotic liz activity survive as males with some female traits. A stock was constructed in which the females are liz SxlM1/liz SxlM1 and males liz SxlM1/Y. This shows that SxlM1 is not truly expressed constitutively in animals with an X:A ratio of 0.5, but requires activity of liz for initiation or maintenance.  相似文献   

14.
Germ line control of female sex determination in zebrafish   总被引:2,自引:0,他引:2  
A major transition during development of the gonad is commitment from an undifferentiated “bi-potential” state to ovary or testis fate. In mammals, the oogonia of the developing ovary are known to be important for folliculogenesis. An additional role in promoting ovary fate or female sex determination has been suggested, however it remains unclear how the germ line might regulate this process. Here we show that the germ line is required for the ovary versus testis fate choice in zebrafish. When the germ line is absent, the gonad adopts testis fate. These germ line deficient testes have normal somatic structures indicating that the germ line influences fate determination of surrounding somatic tissues. In germ line deficient animals the expression of the ovary specific gene cyp19a1a fails to be maintained whereas the testis genes sox9a and amh remain expressed. Furthermore, we observed decreased levels of the ovary specific genes cyp19a1a and foxL2 in germ line deficient animals prior to morphological sex differentiation of the gonad. We propose that the germ line has a common role in female sex determination in fish and mammals. Additionally, we show that testis specification is sufficient for masculinization of the fish pointing to a direct role of hormone signaling from the gonad in directing sex differentiation of non-gonadal tissues.  相似文献   

15.
J. I. Horabin  D. Bopp  J. Waterbury    P. Schedl 《Genetics》1995,141(4):1521-1535
Unlike sex determination in the soma, which is an autonomous process, sex determination in the germline of Drosophila has both inductive and autonomous components. In this paper, we examined how sexual identity is selected and maintained in the Drosophila germline. We show that female-specific expression of genes in the germline is dependent on a somatic signaling pathway. This signaling pathway requires the sex-non-specific transformer 2 gene but, surprisingly, does not appear to require the sex-specific genes, transformer and doublesex. Moreover, in contrast to the soma where pathway initiation and maintenance are independent processes, the somatic signaling pathway appears to function continuously from embryogenesis to the larval stages to select and sustain female germline identity. We also show that the primary target for the somatic signaling pathway in germ cells can not be the Sex-lethal gene.  相似文献   

16.
In Musca domestica, male sex is determined by a dominant factor, M, located either on the Y, the X or on an autosome. M prevents the activity of the female-determining gene F. In the absence of M, F becomes active and dictates female development. The various M factors may represent translocated copies of an ancestral Y-chromosomal M. Double mutants and germ line chimeras show that M(Y), M(I), M(II), M(III) and M(V) perform equivalent functions. When brought into the female germ line, they predetermine male development of the offspring. This maternal effect is overruled by the dominant female-determining factor F(D). M(I) and M(II) are weak M factors, as demonstrated by the presence of yolk proteins in M(I)/+ males and by the occurrence of some intersexes among the offspring that developed from transplanted M(I)/+ and M(II)/+ pole cells. The arrhenogenic mutation Ag has its focus in the female germ line and its temperature-sensitive period during oogenesis. We propose that M(I) and Ag represent allelic M factors that are affected in their expression. Analysis of mosaic gonads showed that in M. domestica the sex of the germ line is determined by inductive signals from the surrounding soma. We present a model to account for the observed phenomena.  相似文献   

17.
Sex determination in the germ line may either rely on cell-autonomous genetic information, or it may be imposed during development by inductive somatic signals. In Drosophila, both mechanisms contribute to ensure that germ cells are oogenic when differentiating in females and spermatogenic when differentiating in males. Some of the genes that are involved in germ line sex determination have been identified. In other species, including vertebrates, inductive signals are commonly used to determine the sex of germ cells.  相似文献   

18.
Androgen administration has been widely used for masculinization in fish. The mechanism of the sex change in sexual fate regulation is not clear. Oral administration or pellet implantation was applied. We orally applied an aromatase inhibitor (AI, to decrease estrogen levels) and 17α-methyltestosterone (MT, to increase androgen levels) to induce masculinization to clarify the mechanism of the sex change in the protogynous orange-spotted grouper. After 3 mo of AI/MT administration, male characteristics were observed in the female-to-male sex change fish. These male characteristics included increased plasma 11-ketotestosterone (11-KT), decreased estradiol (E2) levels, increased male-related gene (dmrt1, sox9, and cyp11b2) expression, and decreased female-related gene (figla, foxl2, and cyp19a1a) expression. However, the reduced male characteristics and male-to-female sex change occurred after AI/MT-termination in the AI- and MT-induced maleness. Furthermore, the MT-induced oocyte-depleted follicle cells (from MT-implantation) had increased proliferating activity, and the sexual fate in a portion of female gonadal soma cells was altered to male function during the female-to-male sex change. In contrast, the gonadal soma cells were not proliferative during the early process of the male-to-female sex change. Additionally, the male gonadal soma cells did not alter to female function during the male-to-female sex change in the AI/MT-terminated fish. After MT termination in the male-to-female sex-changed fish, the differentiated male germ cells showed increased proliferating activities together with dormancy and did not show characteristics of both sexes in the early germ cells. In conclusion, these findings indicate for the first time in a single species that the mechanism involved in the replacement of soma cells is different between the female-to-male and male-to-female sex change processes in grouper. These results also demonstrate that sexual fate determination (secondary sex determination) is regulated by endogenous sex steroid levels.  相似文献   

19.
T M Barnes  J Hodgkin 《The EMBO journal》1996,15(17):4477-4484
The Caenorhabditis elegans sex determination gene tra-3 is required for the correct sexual development of the soma and germ line in hermaphrodites, while being fully dispensable in males. Genetic analysis of tra-3 has suggested that its product may act as a potentiator of another sex determination gene, tra-2. Molecular analysis reported here reveals that the predicted tra-3 gene product is a member of the calpain family of calcium-regulated cytosolic proteases, though it lacks the calcium binding regulatory domain. Calpains are regulatory processing proteases, exhibiting marked substrate specificity, and mutations in the p94 isoform underlie the human hereditary condition limb-girdle muscular dystrophy type 2A. The molecular identity of TRA-3 is consistent with previous genetic analysis which suggested that tra-3 plays a very selective modulatory role and is required in very small amounts. Based on these observations and new genetic data, we suggest a refinement of the position of tra-3 within the sex determination cascade and discuss possible mechanisms of action for the TRA-3 protein.  相似文献   

20.
M. K. Barton  J. Kimble 《Genetics》1990,125(1):29-39
In wild-type Caenorhabditis elegans, the XO male germ line makes only sperm and the XX hermaphrodite germ line makes sperm and then oocytes. In contrast, the germ line of either a male or a hermaphrodite carrying a mutation of the fog-1 (feminization of the germ line) locus is sexually transformed: cells that would normally make sperm differentiate as oocytes. However, the somatic tissues of fog-1 mutants remain unaffected. All fog-1 alleles identified confer the same phenotype. The fog-1 mutations appear to reduce fog-1 function, indicating that the wild-type fog-1 product is required for specification of a germ cell as a spermatocyte. Two lines of evidence indicate that a germ cell is determined for sex at about the same time that it enters meiosis. These include the fog-1 temperature sensitive period, which coincides in each sex with first entry into meiosis, and the phenotype of a fog-1; glp-1 double mutant. Experiments with double mutants show that fog-1 is epistatic to mutations in all other sex-determining genes tested. These results lead to the conclusion that fog-1 acts at the same level as the fem genes at the end of the sex determination pathway to specify germ cells as sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号