首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BDH. Latter  J. C. Mulley  D. Reid    L. Pascoe 《Genetics》1995,139(1):287-297
The rate of decline in reproductive fitness in populations of Drosophilia melanogaster inbred at an initial rate of ~1% per generation has been investigated under both competitive and noncompetitive conditions. Breeding population size was variable in the inbred lines with an estimated harmonic mean of 66.7 +/- 2.2. Of the 60 lines maintained without reserves, 75% survived a period of 210 generations of slow inbreeding and were then rapidly inbred by full-sib mating to near-homozygosity. The initial rate of inbreeding was estimated to be 0.96 +/- 0.16% per generation, corresponding to an effective population size of ~50. However, the rate of inbreeding declined significantly with time to average only 0.52 +/- 0.08% per generation over the 210 generation period, most likely due to associative overdominance built up by genetic sampling and selection in the small populations. The total inbreeding depression in fitness was estimated to be 87 +/- 3% for competitive ability and 27 +/- 5% for fitness under uncrowded conditions, corresponding to rates of decline of 2.0 +/- 0.3 and 0.32 +/- 0.07%, respectively, per 1% increase in the inbreeding coefficient. The frequency of lethal second chromosomes in the resultant near-homozygous lines was of the order of 5%, lethal free second chromosomes showed a mean viability under both crowded and uncrowded conditions of ~95%, and their population cage fitness was 60% that of Cy/+ heterozygotes. It can be concluded that homozygous genotypes from which deleterious genes of major effect have been eliminated during slow inbreeding may show far less depression in reproductive fitness than suggested by earlier studies of wild chromosome homozygotes. The loss in fitness due to homozygosity throughout the entire genome may be as little as 85-90% under competitive conditions, and 25-30% in an optimal environment.  相似文献   

2.
BDH. Latter  J. C. Mulley 《Genetics》1995,139(1):255-266
The rate of adaptation to a competitive laboratory environment and the associated inbreeding depression in measures of reproductive fitness have been observed in populations of Drosophila melanogaster with mean effective breeding size of the order of 50 individuals. Two large wild-derived populations and a long-established laboratory cage population were used as base stocks, from which subpopulations were extracted and slowly inbred under crowded conditions over a period of 210 generations. Comparisons have been made of the competitive ability and reproductive fitness of these subpopulations, the panmictic populations produced from them by hybridization and random mating and the wild- or cage-base populations from which they were derived. After an average of ~180 generations in the laboratory, the wild-derived panmictic populations exceeded the resampled natural populations by 75% in fitness under competitive conditions. The cage-derived panmictic population, after a total of 17 years in the laboratory, showed a 90% superiority in competitive ability over the corresponding wild population. In the inbred lines derived from the wild-base stocks, the average rate of adaptation was estimated to be 0.33 +/- 0.06% per generation. However, the gain in competitive ability was more than offset by inbreeding depression at an initial rate of ~2% per generation. The effects of both adaptation and inbreeding on reproductive ability in a noncompetitive environment were found to be minor by comparison. The maintenance of captive populations under noncompetitive conditions can therefore be expected to minimize adaptive changes due to natural selection in the changed environment.  相似文献   

3.
4.
5.
6.
7.
M. M. Golic  K. G. Golic 《Genetics》1996,143(1):385-400
In Drosophila there exist several examples of gene expression that can be modified by an interaction between alleles; this effect is known as transvection. The inference that alleles interact comes from the observations that homologous chromosomes pair in mitotically dividing cells, and that chromosome rearrangements can alter the phenotype produced by a pair of alleles. It is thought that heterozygous rearrangements impede the ability of alleles to pair and interact. However, because the existing data are inconsistent, this issue is not fully settled. By measuring the frequency of site-specific recombination between homologous chromosomes, we show that structural heterozygosity inhibits the pairing of alleles that lie distal to a rearrangement breakpoint. We suggest that some of the apparent conflicts may owe to variations in cell-cycle lengths in the tissues where the relevant allelic interactions occur. Cells with a longer cell cycle have more time to establish the normal pairing relationships that have been disturbed by rearrangements. In support, we show that Minute mutations, which slow the rate of cell division, partially restore a transvection effect that is disrupted by inversion heterozygosity.  相似文献   

8.
9.
Asynapsis and Mutability in Drosophila Melanogaster   总被引:4,自引:4,他引:0       下载免费PDF全文
P. E. Thompson 《Genetics》1962,47(3):337-349
  相似文献   

10.
11.
Heritability and Phototaxis in Drosophila Melanogaster   总被引:3,自引:0,他引:3       下载免费PDF全文
Nortin M. Hadler 《Genetics》1964,50(6):1269-1277
  相似文献   

12.
13.
Recombination in Drosophila Melanogaster Male   总被引:8,自引:7,他引:1       下载免费PDF全文
T-007 strain of Drosophila melanogaster is known to show recombination in males. The present study established the following points: (1) Clustering occurrence of recombinant, unequal recovery of complementary products of recombination, relatively high frequency of recombination around centromeric region, and relatively frequent occurrence of mosaic phenontype flies-all of these seem to indicate that a considerable fraction of male recombination in the T-007 strain is of premeiotic, or somatic origin, although a fraction still could be of meiotic origin; (2) Male recombination occurs in the third as well as in the second chromosomes, and the frequencies of recombinations are comparable between these two chromosome pairs.  相似文献   

14.
15.
Allozyme-Associated Heterosis in Drosophila Melanogaster   总被引:2,自引:2,他引:2       下载免费PDF全文
D. Houle 《Genetics》1989,123(4):789-801
Two large experiments designed to detect allozyme-associated heterosis for growth rate in Drosophila melanogaster were performed. Heterosis associated with allozyme genotypes may be explained either by functional overdominance at the allozyme loci, or closely linked loci; or by genotypic correlations between allozyme loci and loci at which deleterious recessive alleles segregate. Such genotypic correlations would be favored by consanguineous mating, small effective population size, population mixing and strong natural or artificial selection. D. melanogaster is outbred, has large effective population size and there is little evidence for genotypic disequilibria. Therefore it would be unlikely to show allozyme heterosis due to genotypic correlations. In the first experiment I estimated the genotypic values of 97 replicated genotypes. In the second experiment, 500 individuals were raised in a fluctuating, stressful environment. In neither experiment was there any consistent evidence for allozyme heterosis in size or development rate, fluctuating asymmetry for size or in tendency to deviate from the population mean. In the first experiment, heterosis explained less than 5.6% of the genetic variance in growth characters. In the second, heterosis explained less than 0.1% of the phenotypic variance in growth characters. Outside of the molluscs, species which show allozyme heterosis have population structures or histories which tend to promote genotypic correlations. There is little evidence that functional overdominance is responsible for observations of allozyme-associated heterosis.  相似文献   

16.
17.
Centric Pairing and Crossing-over in Drosophila Melanogaster   总被引:2,自引:2,他引:0       下载免费PDF全文
Peter E. Thompson 《Genetics》1963,48(5):697-701
  相似文献   

18.
X. Peng  S. M. Mount 《Genetics》1990,126(4):1061-1069
  相似文献   

19.
Y Chromosome Loops in Drosophila Melanogaster   总被引:7,自引:2,他引:5       下载免费PDF全文
S. Bonaccorsi  C. Pisano  F. Puoti    M. Gatti 《Genetics》1988,120(4):1015-1034
Primary spermatocyte nuclei of fixed testes of Drosophila melanogaster exhibit three large clusters of thread-like structures, each consisting of two long, continuous, loop-shaped filaments. No comparable intranuclear structures are observed in spermatogonia, secondary spermatocytes or spermatids. The threads begin to form in young spermatocytes, grow throughout spermatocyte development, reach their maximum size in mature spermatocytes and disintegrate prior to meiotic metaphase I. The presence of each cluster of threads depends upon the presence of a specific region of the Y chromosome; when this region is deleted the cluster is absent, and when it is duplicated the cluster is also duplicated. Together these observations strongly suggest that these structures represent giant Y chromosome lampbrush-like loops analogous to those described in Drosophila hydei. Two antibodies, one polyclonal and one monoclonal, differentially react with the three loops of D. melanogaster. Moreover, two of these loops are specifically stained by Giemsa at pH 10. By indirect immunofluorescence with these antibodies followed by Giemsa staining, each loop can be unambiguously identified and its presence and normality readily assessed. This enabled us to perform fine mapping experiments to determine the relationships between the Y chromosome fertility factors and the loops. The loop-forming sites map within the kl-5, kl-3 and ks-1 fertility factors. Regions h3 and h21 of the Y chromosome correspond to the loop-forming sites of kl-5 and ks-1, respectively. Each of these regions contains about 1300 kb of DNA and spans about one-third of its locus. The loop-forming site of the kl-3 locus is coextensive with region h7-h9 which contains about 4300 kb of DNA and corresponds to the minimum physical size of this locus. These data suggest that each loop is an integral part of a different fertility factor, representing the cytological manifestation of its activity in primary spermatocytes. The kl-2, kl-1 and ks-2 fertility regions do not produce any visible intranuclear structure and do not affect the kl-5, kl-3 and ks-1 loops. Thus, these loci may either not form loops at all or produce loop-like structures that we are unable to see because they are physically minute, destroyed by our fixation procedure, or both.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号