首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N4-Aminocytidine is a potent mutagen toward Escherichia coli and Salmonella typhimurium. It induced reversion of an amber mutant of phi X174 phage (am3) to the wild type. This reversion was shown to be exclusively due to the AT to GC transition. It is likely that N4-aminocytidine is metabolized within the bacterial cells into N4-aminodeoxycytidine 5'-triphosphate and this nucleotide is incorporated into DNA during the multiplication of the cells and the phages, thereby causing base-pair transitions. The molecular basis for this erroneous replication was obtained in studies of in vitro incorporation of N4-aminodeoxycytidine 5'-triphosphate into polynucleotides catalyzed by the E. coli DNA polymerase I large fragment. The results have shown that this cytosine analogue can be efficiently incorporated as a substitute of cytosine and that it can also be incorporated as a substitute of thymine. The ratio in the rate of the N4-aminocytosine nucleotide incorporation to that of natural nucleotide incorporation was 1/2 to cytosine and 1/30 to thymine. Furthermore, the N4-aminocytosine residues in the polynucleotide templates can be read by the enzyme as efficiently as cytosines, and guanines were incorporated opposite to them.  相似文献   

2.
N4-Aminocytidine, a nucleoside analog, is strongly mutagenic to various organisms including Escherichia coli. Using E. coli WP2 (trp), we measured the incorporation of [5-3H]N4-aminocytidine into DNA and at the same time measured the frequency of reversion of the wild type, thereby attempting to correlate the incorporation with mutation induction. First, we observed that N4-aminocytidine uptake by the E. coli cells was as efficient as cytidine uptake. High-pressure liquid chromatographic analysis of nucleoside mixtures obtained by enzymatic digestion of isolated cellular DNA showed that the DNA contained [3H]N4-aminodeoxycytidine, corresponding to 0.01 to 0.07% of the total nucleoside; the content was dependent on the dose of N4-aminocytidine. There was a linear relationship between the N4-aminocytosine content in DNA and the mutation frequency observed. These results constitute strong evidence for the view that the N4-aminocytidine-induced mutation in E. coli is caused by the incorporation of this agent into DNA as N4-aminodeoxycytidine. We also found that the major portion of radioactivity in DNA of cells that had been treated with [5-3H]N4-aminocytidine was in the deoxycytidine fraction. We propose a metabolic pathway for N4-aminocytidine in cells of E. coli. This pathway involves the formation of both N4-aminodeoxycytidine 5'-triphosphate and deoxycytidine 5'-triphosphate; the deoxycytidine 5'-triphosphate formation is initiated by conversion of N4-aminocytidine into uridine. In support of this proposed scheme, a cytidine deaminase preparation obtained from E. coli catalyzed the decomposition of N4-aminocytidine into uridine and hydrazine.  相似文献   

3.
Y Mano  H Sakai    T Komano 《Journal of virology》1979,30(3):650-656
phi X174am3trD, a temperature-resistant mutant of bacteriophage phi X174am3, exhibited a reduced ability to grow in a dnaP mutant, Escherichia coli KM107, at the restrictive temperature (43 degrees C). Under conditions at which the dnaP gene function was inactivated, the amount and the rate of phi X174am3trD DNA synthesis were reduced. The efficiency of phage attachment to E. coli KM107 at 43 degrees C was the same as to the parental strain, E. coli KD4301, but phage eclipse and phage DNA penetration were inhibited in E. coli KM107 at 43 degrees C. It is suggested that the dnaP gene product, which is necessary for the initiation of host DNA replication, participates in the conversion of attached phages to eclipsed particles and in phage DNA penetration in vivo in normal infection.  相似文献   

4.
The reaction of cytidine with hydrazine to give N4-aminocytidine was greatly promoted by addition of a less-than-stoichiometric amount of bisulfite, and the product was isolated in a good yield. N4-Aminocytidine was strongly mutagenic to bacteria (Salmonella typhimurium TA100 and TA1535, and E. coli WP2 uvrA) and to phage (phi X174 am3). The activity did not require the presence of mammalian microsomal fraction in the system. The mutagenic potency of N4-aminocytidine in these systems was two orders of magnitude greater than that of N4-amino-2'-deoxycytidine, and more than two orders of magnitude greater than that of N4-hydroxycytidine. The greater activity of the riboside than the deoxyriboside was ascribed to the lack of deoxycytidine kinase in these cells. This compound may be useful as a powerful mutagen to induce a transition mutation in microorganisms.  相似文献   

5.
The relative mutagenicities of O-alkylthymine-DNA adducts were analyzed in vivo by site-specific mutagenesis. Purified DNA polymerases were used to incorporate O4-methyl (Me)-, O4-ethyl (Et)-, O4-isopropyl (iPr)-, or O2-Me-dTTP onto the 3' terminus of a synthetic oligonucleotide (15-mer) hybridized to phi X174 am3 DNA. The product oligonucleotides were further extended in the presence of unmodified dNTPs to yield 21-mers containing single O-alkylthymine adducts opposite the adenine residue of the bacteriophage amber codon. Polyacrylamide gel electrophoresis and nearest-neighbor analyses confirmed the identities and nucleotide positions of the adducts. Transfection and replication of the site-specifically alkylated DNAs in ada- Escherichia coli (defective in the alkyltransferase capable of repairing O4-alkylthymine-DNA adducts) yielded mutant progeny phage with reversion frequencies of: O4-Me-dThd (19.5 X 10(-6) ) greater than O4-Et-dThd (7.5 X 10(-6) ) greater than O4-iPr-dThd (3.0 X 10(-6) ) greater than or equal to O2-Me-dThd (1.0 X 10(-6) ) approximately equal to dThd (2.0 X 10(-6) ). None of the adducts produced mutations above background following replication in ada+ E. coli. DNA sequence analyses of 40 independently isolated mutant phage derived from the O4-Me- or O4-Et-dThd-containing DNAs showed that all mutants contained guanine residues opposite the original site of the alkylthymines. These data are consistent with a mechanism of mutagenesis involving the formation of O4-alkyl-T.G base pairs during DNA replication in E. coli and suggest that the formation of A.T----G.C transition mutations is characteristic of mutagenesis by O4-Me- and O4-Et-dThds in vivo.  相似文献   

6.
The accuracy with which Escherichia coli DNA polymerase I (Pol I) copies natural DNA in vitro has been determined. When phi X174 viral DNA containing an amber mutation (am3) is primed with a single restriction endonuclease fragment, copied in vitro with Pol I and then expressed in E. coli spheroplasts (Weymout, L. A., and Loeb, L. A. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 1924), the reversion frequency of this DNA is greater than that of uncopied DNA. This change in reversion frequency can be increased by selectively increasing the concentration of either dATP or dCTP relative to the other deoxyribonucleotide substrates. DNA sequence analyses of revertants obtained from substrate pool bias experiments demonstrates that the revertants contain the selectively biased nucleotide as an incorrect substitution at position 587 of the am3 codon. We have analyzed the product of the in vitro Pol I reaction using neutral and alkaline sucrose gradients. Fifty per cent of the input phi X174 DNA template molecules are copied past the am3 site. The phenotypic expression of the product (revertant) strand in the spheroplast assay was estimated using a model heteroduplex molecule similar in structure to the product of the reaction and containing a single base mismatch (A:A or A:C) at position 587. Using these data, and by extrapolation from pool bias experiments, we estimate the error rate of Pol I in Mg2+-activated reactions using equimolar concentrations of the four deoxynucleotide substrates is 1/680,000 for an A:C mispair and < 1/6,300,000 for an A:A mispair at position 587 of the am3 codon in phi X174 DNA.  相似文献   

7.
To explore the potential use of a nucleoside analog, N4-aminocytidine, in studies of cellular biology, the mechanism of mutation induced by this compound in mouse FM3A cells in culture was studied. On treatment of cells in suspension with N4-aminocytidine, the mutation to ouabain resistance was induced. The major DNA-replicating enzyme in mammalian cells, DNA polymerase alpha, was used to investigate whether the possible cellular metabolite of N4-aminocytidine, N4-aminodeoxycytidine 5'-triphosphate (dCamTP), can be incorporated into the DNA during replication. Using [3H]dCamTP in an in vitro DNA-synthesizing system, we were able to show that this nucleotide analog can be incorporated into newly formed DNA and that it can serve as a substitute for either dCTP or dTTP. dCamTP in the absence of dCTP maintained the activated calf thymus DNA-directed polymerization of deoxynucleoside triphosphates as efficiently as in its presence. Even in the presence of dCTP, dCamTP was incorporated into the polynucleotide. When dCamTP was used as a single substrate in the poly(dA)-oligo(dT)-directed polymerase reaction, it was incorporated into the polynucleotide fraction. The extent of incorporation was 4% of that of dTTP incorporation when dTTP was used as a single substrate. Even in the presence of dTTP, dCamTP incorporation was observed. A copolymer containing N4-aminocytosine residues was shown to incorporate guanine residues opposite the N4-aminocytosines. However, we were unable to observe adenine incorporation opposite N4-aminocytosine in templates. These cell-free experiments show that an AT-to-GC transition can take place in the presence of dCamTP during DNA synthesis, strongly suggesting that the mutation induced in the FM3A cells by N4-aminocytidine is due to replicational errors.  相似文献   

8.
The objective of our work with phi X174 has been to develop a shuttle vector that can be used comparatively in bacterial cells, different types of mammalian cells, and possibly in the various tissues of transgenic mice, with a constant mechanism for detection and analysis of mutations independent of any host-cell type. Toward that end, we have efficiently rescued phi X174 am3 cs70 that is host-silent and stably integrated into the genome of mouse L-cells. The particular mouse L-cell line contains tandem arrays, single copies, and fragments of phi X that, upon restriction enzyme excision, can result in 5 potentially active copies per diploid genome. The excised phi X DNA is recovered by column chromatography, ligated, and transfected into highly competent spheroplasts. The Rescue Efficiency, defined as the number of viable phages produced out of the total number of potentially recoverable copies, is approx. 10(-3). The Recovery Ratio, defined as the Rescue Efficiency for chromosomally-integrated phage DNA divided by the Rescue Efficiency for phi X am3 cs70, is close to one. Mouse L-cells containing the integrated phi X174 am3 cs70 were treated with 20 mM ethyl methanesulfonate. The reversion frequency of am3 among progeny phages rescued from treated cells was 1.4 X 10(-5) (193 revertants in 1.4 X 10(7) phages). This is significantly higher than the 5.8 X 10(-7) reversion frequency of am3 (7 revertants in 1.2 X 10(7) phages) among progeny phages rescued from untreated cells.  相似文献   

9.
The oligodeoxyribonucleotides, pCCCAGCCTCAA, which is complementary to nucleotides 5274--4284 of bacteriophage phi X174 viral DNA , and pCCCAGCCTAAA, which corresponds to the same sequence with a C leads to A change at the ninth nucleotide, were synthesized enzymatically. The second of these oligonucleotides was used as a primer for E. coli DNA polymerase I, from which the 5'-exonculease has been removed by proteolysis (Klenow enzyme), on wild-type phi X174 viral DNA template. After ligation, this yielded closed circular heteroduplex DNA with a G, A mismatch at nucleotide 5276. Transfection of E. coli spheroplasts with the heteroduplex DNA produced phage mutated at this nucleotide (G leads to T in the viral DNA) with high efficiency (13%). The mutant DNA, which corresponds to the gene B mutant am16, was reverted (T leads to G) by the wild type oligonucleotide with an efficiency of 19%. The nucleotide changes were established by sequence determination of the mutated viral DNA using the enzymatic terminator method. The production of specific transversion mutations, together with a previous demonstration of specific transition mutations (1), established that short enzymatically synthesized oligodeoxyribonucleotides can be used to induce any class of single nucleotide replacement with high efficiency and thus provide a powerful tool for specific genetic manipulations in circular genomes like that of phi X174.  相似文献   

10.
T A Kunkel  R M Schaaper  L A Loeb 《Biochemistry》1983,22(10):2378-2384
Removal of purine bases from phi X174 single-stranded DNA leads to increased reversion frequency of amber mutations when this DNA is copied in vitro with purified DNA polymerases. This depurination-induced mutagenesis is observed at three different genetic loci and with several different purified enzymes, including Escherichia coli DNA polymerases I and III, avian myeloblastosis virus DNA polymerase, and eukaryotic DNA polymerases alpha, beta, and gamma. The extent of mutagenesis correlates with the estimated frequency of bypass of the lesion and is greatest with inherently inaccurate DNA polymerases which lack proofreading capacity. With E. coli DNA polymerase I, conditions which diminish proofreading result in a 3-5-fold increase in depurination-induced mutagenesis, suggesting a role for proofreading in determining the frequency of bypass of apurinic sites. The addition of E. coli single-stranded DNA-binding protein to polymerase I catalyzed reactions with depurinated DNA had no effect on the extent of mutagenesis. Analysis of wild-type revertants produced during in vitro DNA synthesis by polymerase I or avian myeloblastosis virus DNA polymerase on depurinated phi X174 amber 3 DNA indicates a preference for insertion of dAMP opposite the putative apurinic site at position 587. These results are discussed in relation both to the mutagenic potential of apurinic sites in higher organisms and to studies on error-prone DNA synthesis.  相似文献   

11.
N4-Aminocytidine, a nucleoside analog, is a potent mutagen towards phages, bacteria, Drosophila and mammalian cells in culture. In vitro, biochemical studies indicate that this reagent acts by being incorporated into DNA. To elucidate the mechanism of N4-aminocytidine mutagenesis, it is essential to identify the nature of DNA sequence alterations taking place during the mutagenesis. We have analyzed the nucleotide sequence changes in the lac promoter-lacZ alpha region of M13mp2 phage induced by treatment of phage-infected Escherichia coli with N4-aminocytidine. The sequence alterations of DNA samples from 89 mutants of the phage were determined. These mutants had single point mutations, except one mutant, in which a double point mutation was detected. Several hot spots were found: however, there are no apparent relations to particular DNA sequences regarding the locations of these spots. All the mutations are transitions; neither transversions nor deletions/insertions were found. A feature in these transitions is that the A/T to G/C and G/C to A/T changes occur at approximately equal rates. The overall picture of the mutagenesis is consistent with a scheme in which misincorporation and misreplication caused by the modified cytosine structure are the key steps in the DNA replication leading to transitions. Similar nucleotide alterations were found for the mutagenesis induced by an alkylated derivative, N'-methyl-N4-aminocytidine. N4-Aminocytidine also induced reversions of these mutants; both A/T to G/C and G/C to A/T transitions again took place.  相似文献   

12.
Molecular mechanism of the mutation induced by N4-aminocytidine was studied. The specificity of in vitro incorporation of N4-aminodeoxycytidine 5'-triphophate catalyzed by E. coli DNA polymerase large fragment was analyzed. The results have shown that this cytosine analog can be efficiently incorporated as a substitute of cytosine, and that it can also be incorporated with a low efficiency as a substitute of thymine. We have also shown that the N4-aminocytosine incorporated opposite adenine can be excised as its monophosphate at a high frequency. The N4-aminocytosine residues in the polynucleotide templates can be read by the enzyme as efficiently as cytosines, and guanines were incorporated opposite them.  相似文献   

13.
Oligodeoxyribonucleotide mutagenesis has been used to produce a G----A mutation at nucleotide 557 of the phi X174 genome. This changes the ribosome-binding sequence GAGG of gene E to GAAG without affecting the amino acid, glutamine, encoded by the overlapping gene D. The phi X174rb(E)557 mutant does not lyse infected Escherichia coli C and therefore results in the accumulation of a large number intracellular mature phage particles. Thus, the mutation inactivates production of the gene E lytic product, presumably by blocking translation of gene E, without affecting other phage functions.  相似文献   

14.
Mutagenesis resulting from depurination is an SOS process   总被引:10,自引:0,他引:10  
When bacteriophage phi X174 am3 DNA depurinated in vitro is transfected into E. coli spheroplasts prepared from bacteria previously exposed to UV light, a strong mutagenic response is observed. This mutagenic response does not occur in spheroplasts derived from pre-irradiated bacteria carrying defective recA, recF or umuC genes. These findings indicate that mutagenesis at apurinic sites is an SOS-dependent process. The mutagenic response is not dependent on the multiplicity of transfection. This suggests that mutagenesis is not mediated by recombination.  相似文献   

15.
An M13 phage deletion mutant, M13 delta E101, developed as a vector for selecting DNA sequences that direct DNA strand initiation on a single-stranded template, has been used for cloning restriction enzyme digests of phi X174 replicative-form DNA. Initiation determinants, detected on the basis of clear-plaque formation by the chimeric phage, were found only in restriction fragments containing the unique effector site in phi X174 DNA for the Escherichia coli protein n' dATPase (ATPase). Furthermore, these sequences were functional only when cloned in the orientation in which the phi X174 viral strand was joined to the M13 viral strand. A 181-nucleotide viral strand fragment containing this initiation determinant confers a phi X174-type complementary-strand replication mechanism on M13 chimeras. The chimeric phage is converted to the parental replicative form in vivo by a mechanism resistant to rifampin, a specific inhibitor of the normal RNA polymerase-dependent mechanism of M13. In vitro, the chimeric single-stranded DNA promotes the assembly of a functional multiprotein priming complex, or primosome, identical to that utilized by intact phi X174 viral strand DNA. Chimeric phage containing the sequence complementary to the 181-nucleotide viral strand sequence shows no initiation capability, either in vivo or in vitro.  相似文献   

16.
N4-Aminocytidine induced mutation to 6-thioguanine resistance in Chinese hamster lung V79 cells in culture. Previous studies with experimental systems of in vitro DNA synthesis and of phage and bacterial mutagenesis have shown that this nucleoside analog induces base-pair transitions through its incorporation into DNA, with its erroneous base-pairing property. Incorporation of exogenously added [5-3H]N4-aminocytidine into the DNA of V79 cells was in fact observed in the present study. N4-Aminodeoxycytidine was not mutagenic for the V79 cells. Several alkylated N4-aminocytidine derivatives were tested for their mutagenicity in this system. Those with an alkyl group on the N'-nitrogen of the hydrazino group at position 4 of N4-aminocytidine were mutagenic, but those having an alkyl on the N4-nitrogen were not. These results are consistent with those previously observed in the bacterial mutagenesis systems, and agree with a mechanism of mutation in which a tautomerization of N4-aminocytosine is the necessary step for causing the erroneous base pairing.  相似文献   

17.
Gene A of the phi X174 genome codes for two proteins, A and A* (Linney, E.A., and Hayashi, M.N. (1973) Nature New Biol. 245, 6-8) of molecular weights 60,000 and 35,000, respectively. The phi X A* protein is formed from a natural internal initiator site within the A gene cistron while the phi X A protein is the product of the entire A gene. These two proteins have been purified to homogeneity as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Previous studies have shown that the phi X A protein is an endonuclease which specifically introduces a discontinuity in the A cistron of the viral strand of supertwisted phi XRFI DNA. In addition to this activity, the phi X A protein also causes relaxation of supertwisted phi XRFI DNA and formation of a phi XRFH DNA . phi X A protein complex which has a discontinuity in the A cistron of the viral strand. This isolatable complex supports DNA synthesis when supplemented with extracts of uninfected Escherichia coli which lack phi X A protein and phi XRFI DNA. The phi XRFII DNA . phi X A protein complex can be attacked by exonuclease III but is not susceptible to attack by E. coli DNA polymerase I, indicating that the 5'-end of the complex is blocked. Attempts to seal the RFII structure generated from the phi XRFII DNA . phi X A protein complex with T4 DNA ligase in the presence or absence of DNA polymerase were unsuccessful. The phi X A protein does not act catalytically in the cleavage of phi XRFI DNA. Under conditions leading to the quantitative cleavage of phi XRFI DNA, the molar ratio of phi XRFI DNA to added phi X A protein was approximately 1:10. At this molar ratio, cross-linking experiments with dimethyl suberimidate yielded 10 distinct protein bands which were multiples of the monomeric phi X A protein. In the absence of DNA or in the presence of inactive DNA (phi XRFII DNA) no distinct protein bands above a trimer were detected. We found it possible in vitro to form a phi XRFII DNA . phi X A protein complex with wild-type phi XRFI DNA (phi X A gene+) and with phi XRFI DNA isolated from E. coli (su+) infected with phage phi X H90 (an am mutant in the phi X A gene). Thus, in vitro, in contrast to in vivo studies, phi X A protein is not a cis acting protein. The purified phi X A* protein does not substitute for the phi X A protein in in vitro replication of phi XRFI DNA nor does it interfere with the action of the phi X A protein which binds only to supertwisted phi XRFI DNA. In contrast, the phi X A* protein binds to all duplex DNA preparations tested. This property prevents nucleases of E. coli from hydrolyzing duplex DNAs to small molecular weight products.  相似文献   

18.
The complete nucleotide sequence of the genome of the circular single-stranded DNA (isometric) phage alpha 3 has been determined and compared with that of the related phages phi X174 and G4. The alpha 3 genome consists of 6087 nucleotides, which is 701 nucleotides longer than the nucleotide sequence of the phi X174 genome and 510 nucleotides more than that of the G4 genome. The results demonstrated that the three phage species have 11 homologous genes (A, A*, B, C, K, D, E, J, F, G and H), the order of which is fundamentally identical, suggesting that they have evolved from a common ancestor. The sequence of some genes and untranslated intergenic regions, however, differs significantly from phage to phage: for example, the degree of amino acid sequence homology of the gene product is averaged at 47.7% between alpha 3 and phi X174 and 46.9% between alpha 3 and G4, and alpha 3 has a remarkable longer intergenic region composed of 758 nucleotides between the genes H and A compared with the counterparts of phi X174 and G4. Meanwhile, in vivo experiments of genetic complementation showed that alpha 3 can use none of the gene products of phi X174 and G4, whereas the related phage phi K can rescue alpha 3 nonsense mutants of the genes B, C, D and J. These sequencing and in vivo rescue results indicated that alpha 3 is closely related to phi K, but distantly remote from phi X174 or G4, and supported an evolutional hypothesis which has been so far proposed that the isometric phages are classified into three main groups: the generic representatives are phi X174, G4 and alpha 3.  相似文献   

19.
5-hydroxymethyluracil (HmUra) is formed in DNA as a product of oxidative attack on the methyl group of Thy. It is removed from DNA by HmUra-DNA glycosylase. To determine whether the replacement of Thy by HmUra is mutagenic, which might explain the repairability of HmUra, a HmUra residue was substituted for Thy in a target (amber) codon by in vitro extension of an oligonucleotide primer annealed to phi X-174am3 virion DNA. This was accomplished by synthesizing HmdUTP and using DNA polymerase to effect primer extension. E. coli spheroplasts were transfected with the HmUra-containing DNA and the yield of revertant phage determined following replication in the bacterial host. Since E. coli do not express HmUra-DNA glycosylase activity, mutagenesis could be assessed in the absence of repair. chi 2c analysis showed that replacing Thy with HmUra did not result in an increase in revertant phage. These data indicate that the oxidation of Thy to HmUra in cellular DNA probably does not result in substantial mutagenesis.  相似文献   

20.
The A and A* proteins of phage phi X174 are encoded in the same reading frame in the viral genome; the smaller A protein is the result of a translational start signal with the A gene. To differentiate their respective functions, oligonucleotide-directed site-specific mutagenesis was used to change the ATG start codon of the phi X 174 A* gene, previously cloned into pCQV2 under lambda repressor control, into a TAG stop codon. The altered A gene was then inserted back into phi X replicative form DNA to produce an amber mutant, phi XamA*. Two different Escherichia coli amber suppressor strains infected with this mutant produced viable progeny phage with only a slight reduction in yield. In Su+ cells infected with phi XamA*, phi X gene A protein, altered at one amino acid, was synthesized at normal levels; A* protein was not detectable. These observations indicate that the A* protein increases the replicative efficiency of the phage, perhaps by shutting down host DNA replication, but is not required for replication of phi X174 DNA or the packaging of the viral strand under the conditions tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号