首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A biosensor system based on total internal reflectance fluorescence (TIRF) was used to discriminate a mixture of the triazines atrazine and simazine. Only cross-reactive antibodies were available for these two analytes. The biosensor is fully automated and can be regenerated allowing several hundreds of measurements without any user input. Even a remote control for online monitoring in the field is possible. The multivariate calibration of the sensor signal was performed using artificial neural networks, as the relationship between the sensor signals and the concentration of the analytes is highly non-linear. For the development of a multi-analyte immunoassay consisting of two polyclonal antibodies with cross-reactivity to atrazine and simazine and different derivatives immobilised on the transducer surface, the binding characteristics between these substances like binding capacity and cross-reactivity were characterised. The examination of three different measurement procedures showed that a two-step measurement using only one antibody per step allows a quantification of both analytes in a mixture with limits of detection of 0.2 microg/l for atrazine and 0.3 microg/l for simazine. The biosensor is suitable for online monitoring in the field and remote control is possible.  相似文献   

2.
This paper describes a heterogeneous competitive flow immunoassay with a high sample throughput which can be used for the screening of smaller analytes in various samples. The method is based on off-line incubation of the analyte (Ag), a fluorescent labelled tracer (Ag*) and the corresponding antibody (Ab). The separation of bound (Ab-Ag*) and free tracer (Ag*) is based on a size exclusion and reversed phase mechanism utilizing a restricted access (RA) column. The column traps the free unbound tracer (Ag*) in its hydrophobic (C18) inner cavity but excludes the large Ab-Ag* complex, which is passed on and measured by the fluorescence detector. The flow immunoassay was developed using the triazine herbicide atrazine as a model compound owing to its human toxicity and widespread use. A sample throughput of 80 samples per hour and a detection limit of 300 pg ml-1 in water were obtained. Urine samples were successfully applied for direct injections into the flow system, while for human plasma samples an additional clean-up step using solid phase extraction was efficiently included where pure extract is obtained with the highly stable and biocompatible extracting column material. The resulting detection limits for atrazine in plasma and water samples using this clean-up and trace enrichment procedure were found to be 2 ng ml-1 and 20 pg ml-1 respectively.  相似文献   

3.
Supercritical fluid extraction (SFE) of soil herbicides followed by enzyme immunoassay analysis (EIA) is explained in a step-by-step process. Extracted herbicides, include 2,4-D, simazine, atrazine, and alachlor. The herbicide, trifluralin was not successfully analyzed by EIA because of crossreacting metabolites. Problems with SFE, including uneven packing of cells, leaks, uneven flow and clogging, can largely be eliminated as the method parameters are optimized. It was necessary to add modifiers including methanol or acetone to the SF CO2 to increase the solubility of the analytes. Detection limits of 2.5 ng/g soil for atrazine and alachlor and 15 ng/g soil for simazine and 2,4-D without concentration of the sample were achieved. Recoveries above 80% and relative standard deviations (RSDs) less than 15% for 2,4-D simazine, atrazine and alachlor were achieved. Atrazine and alachlor recoveries were above 90% with RSDs below 10%. Forty soil samples could be extracted and analyzed in an 8-h day.  相似文献   

4.
The effect of herbicide atrazine was studied on the growth and development of a number of soil and wood decay fungi: white-rot basidiomycetes (Cerrena maxima, Coriolopsis fulvocenerea, and Coriolus hirsutus), thermophilic micromycetes from self-heating grass composts (cellulolytic fungus Penicillium sp. 13 and noncellulolytic ones Humicola lanuginosa spp. 5 and 12), and mesophilic phenol oxidase-producing micromycete Mycelia sterilia INBI 2-26. Detection of atrazine in liquid fungal cultures was performed by using enzyme immunoassay technique. Both stimulation (Humicola lanuginosa 5) and suppression (Humicola lanuginosa 12 and Penicillium sp. 13) of fungal growth with atrazine were observed on solid agar media. Hyphomycete Mycelia sterilia INBI 2-26 was almost insensitive to the presence of atrazine. Neither of thermophilic strains was capable of atrazine consumption in three-week cultivation. In contrast with that, active laccase producers Cerrena maxima, Coriolopsis fulvocenerea, and Coriolus hirsutus consumed up to 50% atrazine in 5-day cultivation in the presence of the xenobiotic and at least 80-90% in 40 days. Mycelia sterilia INBI 2-26, which also forms extracellular laccase, also consumed up to 70% atrazine in 17 days. The degree of atrazine consumption depended on the term of its addition to the fungal culture medium.  相似文献   

5.
A study was made to describe atrazine toxicity and its changes throughout succession of periphyton communities of an undisturbed Mediterranean stream. Toxicity was assessed by short-term physiological tests (concentration-effect curves of photosynthesis to atrazine) in the laboratory using artificial substrates colonized in one stream site during winter, and two stream sites (one open and the other shaded) during summer. In the winter experiment, when environmental conditions were relatively steady and chlorophyll content was low, toxicity increased according to the increases in cell density and chlorophyll content throughout colonization. EC50 (concentration inhibiting photosynthesis by 50%) was above 0.8 μM atrazine until day 16 and below 0.4 μM atrazine after three weeks. In the summer experiment, under more variable environmental conditions, the differences between the EC50 at the beginning and the end of the colonization experiments were not significant (one factor ANOVA) at the two sites. EC50 was on average 0.89 μM atrazine in the shaded site and 0.29 μM atrazine in the open site. A significant negative correlation between irradiance and EC50 was observed all the experiments were considered together (r = 0.464, n = 20, p<0.05), suggesting that light history may have an important role in the response to atrazine. This investigation reveals that the response of stream periphyton to atrazine is likely to be influenced by colonization time and the corresponding changes in algal density and community composition as well as by environmental conditions (e.g. light regime) throughout succession. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

6.
Arthrobacter nicotinovorans HIM was isolated directly from an agricultural sandy dune soil 6 months after a single application of atrazine. It grew in minimal medium with atrazine as sole nitrogen source but was unable to mineralize 14C-ring-labelled atrazine. Atrazine was degraded to cyanuric acid. In addition to atrazine the bacterium degraded simazine, terbuthylazine, propazine, cyanazine and prometryn but was unable to grow on terbumeton. When added to soil, A. nicotinovorans HIM did enhance mineralization of 14C-ring-labelled atrazine and simazine, in combination with naturally occurring cyanuric acid degrading microbes resident in the soil. Using PCR, the atrazine-degradation genes atzABC were identified in A. nicotinovorans HIM. Cloning of the atzABC genes revealed significant homology (>99%) with the atrazine degradation genes of Pseudomonas sp. strain ADP. The atrazine degradation genes were held on a 96 kbp plasmid.  相似文献   

7.
Enzyme immunoassay (EIA) microtiter plate analysis was used to quantify atrazine (2‐chloro‐4‐ethylamino‐6‐isopropylamino‐1,3,5 triazine), fortified at 0, 50, and 500 or 549 ng/g, to Baxter and Maury silt loam soil sampled in 1965 and 1991. In the first experiment, aged soils (sampled in 1965 and stored air‐dried) were fortified with atrazine and then incubated in the dark at 0, 75, 150, 225 and 300 g/kg moisture for 15, 80, 154, and 289 d. In a second experiment, fresh soils were fortified with atrazine and incubated in the dark at 0, 150, and 300 g/kg moisture for 9, 15, 35, 55, 83, and 145 d. One half of the treatments in the second experiment were sterilized with 497 ng/g HgCl2. Twenty milliliters of acetonitrile: water (9: 1) was used to extract 4 or 5 g of soil by vortex mixing at each sampling date. The soil extract was diluted, 80 μl incubated with antibody‐coated wells, and color development read using a microtiter plate reader. Recovery of atrazine from soil was 98% 5 d after fortification. Pesticide recoveries and first‐order degradation rates were dependent on the freshness and moisture content of the soil sample. Pesticide degradation was slower and recoveries higher in soil that had been air dried and stored since 1965, prior to fortification. More atrazine was extracted from soil maintained at 0 g/kg moisture than from soil maintained at 300 g/kg moisture over time.  相似文献   

8.
The relationship between environmental variables, community composition and the sensitivity of periphyton on artificial substrata to the herbicide atrazine (EC50 values obtained by concentration-effect curves of photosynthesis to atrazine) was studied for 20 stream and river sites on a latitudinal across Europe (Sweden, The Netherlands, Spain). Sensitivity to atrazine was higher in Swedish than in the Spanish or Dutch sites. Direct gradient analyses were used to relate diatom taxa and algal groups with environmental variables. A first redundancy analysis (RDA) based on diatom taxa showed a pollution gradient (atrazine and nutrient concentration) associated to diatom taxa that are indicators of different degrees of pollution. A second RDA based on algal groups showed that diatom-dominated communities corresponded both to sites at higher altitudes and less industrialized areas and to sites with higher atrazine concentration; Cyanobacteria were the most common in industrial areas, whereas Chlorophyceae dominated in sites with high water temperature and alkalinity. Linear regression analyses were applied to find the relationship between the ordination axes obtained and the EC50 values. First axes of both RDA showed significant or marginally significant relationship with atrazine sensitivity. Regression analyses for the Spanish sites indicated that the sensitivity to atrazine was related with light conditions (EC50 was positively correlated with light) and the percentage of different algal groups (EC50 was positively correlated with the percentage of diatoms and negatively correlated with the percentage of green algae). The results indicating that differences in sensitivity are related to environmental variables such as light, nutrients or atrazine concentration, permitted us to identify biological indicators of sensitivity to atrazine in lotic systems: Bacillariophyceae-dominated periphyton communities were more tolerant than Chlorophyceae and Chrysophyceae-dominated communities. In addition, diatom taxa found to be tolerant to atrazine in this study have been considered in the literature to be tolerant to organic pollution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Evidence has accumulated that herbicides in the environment present a significant health hazard to the population. Therefore, the levels of heavily used substances such as atrazine and simazine and their metabolites need to be regularly assessed. The objective was to develop a rapid and simple tube ELISA procedure suitable for use in field studies and non-specialized laboratories. The antisera used were polyclonal antibodies raised in sheep against atrazine or simazine amido caproic acid conjugated to bovine serum albumin. The antibodies were first used to construct a two-step competitive ELISA procedure in 96-well microtitre plates. The 96-well format was then adapted to a coated-tube enzyme immunoassay, by immobilization of hapten-gelatine conjugates on polystyrene tubes. This enabled the colour to be read using a basic spectrophotometer. Soil samples were collected from agricultural and non-agricultural sites in Poland. Atrazine and simazine were extracted by liquid extraction from soil and assayed by tube ELISA. In addition, the samples were extracted by solid-phase extraction before analysis by HPLC. The immunoassays and chemical analysis were carried out by different individuals who were unaware of each other's results, which were then compared at the end of the study. Correlation of the two methods was excellent, with R=98.7 and 81.3 for atrazine and simazine, respectively. The immunoassay yielded the same order of results without having to perform solid-phase extraction before analysis. The study has demonstrated that the simple antigen-coated tube assay provides a cost-effective and valuable screening test. Comparison with the more elaborate, heavily labour-intensive HPLC analysis demonstrated that the results obtained by the simpler enzyme-immunoassay tests were within the same order.  相似文献   

10.
Evidence has accumulated that herbicides in the environment present a significant health hazard to the population. Therefore, the levels of heavily used substances such as atrazine and simazine and their metabolites need to be regularly assessed. The objective was to develop a rapid and simple tube ELISA procedure suitable for use in field studies and non-specialized laboratories. The antisera used were polyclonal antibodies raised in sheep against atrazine or simazine amido caproic acid conjugated to bovine serum albumin. The antibodies were first used to construct a two-step competitive ELISA procedure in 96-well microtitre plates. The 96-well format was then adapted to a coated-tube enzyme immunoassay, by immobilization of hapten-gelatine conjugates on polystyrene tubes. This enabled the colour to be read using a basic spectrophotometer. Soil samples were collected from agricultural and non-agricultural sites in Poland. Atrazine and simazine were extracted by liquid extraction from soil and assayed by tube ELISA. In addition, the samples were extracted by solid-phase extraction before analysis by HPLC. The immunoassays and chemical analysis were carried out by different individuals who were unaware of each other's results, which were then compared at the end of the study. Correlation of the two methods was excellent, with R=98.7 and 81.3 for atrazine and simazine, respectively. The immunoassay yielded the same order of results without having to perform solid-phase extraction before analysis. The study has demonstrated that the simple antigen-coated tube assay provides a cost-effective and valuable screening test. Comparison with the more elaborate, heavily labour-intensive HPLC analysis demonstrated that the results obtained by the simpler enzyme-immunoassay tests were within the same order.  相似文献   

11.
Fifteen atrazine-degrading microbial communities obtained from different sources were able to degrade atrazine in a liquid mineral medium as the main organic substrate at high rates (atrazine half-lives ranging from 20 to 164 h). Hydroxyatrazine was the sole metabolite detected. This metabolite was always transient but its maximum level varied from 4 to 67% of the parent compound. Communities originating from subsurface sediments degraded atrazine at similar rates (half-lives between 56 and 62 h). A Biolog characterisation revealed a wide diversity of substrate utilisation by the communities originating either from the surface or the subsurface environments. Twenty-four Biolog carbon sources were degraded by the fifteen communities. A multiple regression analysis established a statistically significant relationship between the atrazine DT50 values of thirteen communities and their responses to four Biolog carbon sources. Received 12 June 1998/ Accepted in revised form 9 October 1998  相似文献   

12.
Atrazine degradation by bioaugmented sediment from constructed wetlands   总被引:4,自引:0,他引:4  
The potential to establish pesticide biodegradation in constructed wetland sediment was investigated. Under microcosm conditions, bioaugmentation of sediment with small quantities of an atrazine spill-site soil (1:100 w/w) resulted in the mineralization of 25-30% of 14C ethyl atrazine (1-10 microg g(-1) sediment) as 14CO2 under both unsaturated and water-saturated conditions; atrazine and its common metabolites were almost undetectable after 30 days incubation. By comparison, unbioaugmented sediment supplemented with organic amendments (cellulose or cattail leaves) mineralized only 2-3% of 14C ethyl atrazine, and extractable atrazine and its common metabolites comprised approximately 70% of the original application. The population density of atrazine-degrading microorganisms in unbioaugmented sediment was increased from approximately 10(2)/g to 10(4)/g by bioaugmentation (1:100 w/w), and increased by another 60-fold (6.0x10(5) g(-1)) after incubation with 10 microg g(-1) of atrazine. A high population of atrazine degraders (approximately 10(6) g(-1)) and enhanced rates of atrazine mineralization also developed in bioaugmented sediment after incubation in flooded mesocosms planted with cattails (Typha latifolia) and supplemented with atrazine (3.2 mg l(-1), 1 microg g(-1) sediment). In the absence of atrazine, neither the population of atrazine degraders, nor the atrazine mineralizing potential of bioaugmented sediment increased, regardless of the presence or absence of cattails. Bioaugmentation might be a simple method to promote pesticide degradation in nursery run-off channeled through constructed wetlands, if persistence of degraders in the absence of pesticide is not a serious constraint.  相似文献   

13.
Repeated pesticide exposure may enhance biodegradation through selective enrichment of pesticide-metabolizing microorganisms, particularly when the compound is used as a C and energy source. The relationship between pesticide application history and degradation rate is unclear when the chemical is utilized as a nutrient source other than C. Atrazine, a poor source of C and energy, was chosen as a model compound because it can serve as an N source for some microorganisms. Soils with (H-soil) and without (NH-soil) prior s-triazine treatment history were repeatedly exposed to atrazine and a variety of C and N source amendments. Exposure to atrazine and inorganic-N availability were the dominant factors leading to the development of microbial communities with an enhanced capacity to degrade atrazine. The density of the atrazine-degrading microorganisms increased immediately, up to 1000-fold, with atrazine exposure in the H-soil, but comparable increases were not observed in the NH-soil until 12 weeks following laboratory acclimation, despite high rates of atrazine mineralization in these soils immediately following the acclimation period. Whole-soil fatty acid methyl ester (FAME) analysis showed that the application of alternative C and N sources in addition to atrazine resulted in a microbial community composition that was distinctly different from that in either the atrazine-alone treatment or water controls for both the H- and NH-soils. These data suggest that the microbial communities in both soils were altered differently in response to the treatments but developed a similar enhanced capacity to mineralize atrazine.  相似文献   

14.
Effect of two photosynthetic inhibitor herbicides, atrazine (both purified and formulated) and [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] (DCMU), on the growth, macromolecular contents, heterocyst frequency, photosynthetic O2 evolution and dark O2 uptake of wild type and multiple herbicide resistant (MHR) strain of diazotrophic cyanobacterium A. variabilis was studied. Cyanobacterial strains showed gradual inhibition in growth with increasing dosage of herbicides. Both wild type and MHR strain tolerated < 6.0 mg L(-1) of atrazine (purified), < 2.0 mg L(-1) of atrazine (formulated) and < 0.4 mg L(-1) of DCMU indicating similar level of herbicide tolerance. Atrazine (pure) (8.0 mg L(-1)) and 4.0 mg L(-1) of atrazine (formulated) were growth inhibitory concentrations (lethal) for both wild type and MHR strain indicating formulated atrazine was more toxic than the purified form. Comparatively lower concentrations of DCMU were found to be lethal for wild type and MHR strain, respectively. Thus, between the two herbicides tested DCMU was more growth toxic than atrazine. At sublethal dosages of herbicides, photosynthetic O2 evolution showed highest inhibition followed by chlorophyll a, phycobhiliproteins and heterocyst differentiation as compared to carotenoid, protein and respiratory O2 uptake.  相似文献   

15.
Atrazine is currently the most widely used herbicide in agriculture with lots of adverse effects on human health. Curcumin is a polyphenol known for its antioxidant, anti‐inflammatory, and anticancer properties. In the present study, the protective effect of curcumin on atrazin‐intoxicated rats is evaluated. Toxicity was induced by oral administration of atrazine (400 mg/kg/day) for 3 weeks. Curcumin at a dose of 400 mg/kg/day was given simultaneously by oral route. Redox status, mitochondrial function, 8‐hydroxydeoxyguanosine (8‐OHdG) level by immunoassay, and caspace‐3 expression by immunohistochemistry were evaluated. Curcumin showed significant cardiac protection with improvement of redox status, mitochondrial function, 8‐OHdG level, caspase‐3 immunoreactivity, and cardiac muscle degeneration. From this current study, it can be concluded that administration of curcumin improved atrazine‐induced cardiotoxicity through its modulatory effect on redox status, mitochondrial function, and caspase‐3 expression.  相似文献   

16.
Assessment of bioavailability of soil-sorbed atrazine   总被引:4,自引:0,他引:4  
Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO(2) production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration, chemotaxis, and attachment of cells to soil particles seem to contribute to the bioavailability of soil-sorbed atrazine.  相似文献   

17.
Dechlorination of Atrazine by a Rhizobium sp. Isolate   总被引:4,自引:0,他引:4       下载免费PDF全文
A Rhizobium sp. strain, named PATR, was isolated from an agricultural soil and found to actively degrade the herbicide atrazine. Incubation of PATR in a basal liquid medium containing 30 mg of atrazine liter(sup-1) resulted in the rapid consumption of the herbicide and the accumulation of hydroxyatrazine as the only metabolite detected after 8 days of culture. Experiments performed with ring-labeled [(sup14)C]atrazine indicated no mineralization. The enzyme responsible for the hydroxylation of atrazine was partially purified and found to consist of four 50-kDa subunits. Its synthesis in PATR was constitutive. This new atrazine hydrolase demonstrated 92% sequence identity through a 24-amino-acid fragment with atrazine chlorohydrolase AtzA produced by Pseudomonas sp. strain ADP.  相似文献   

18.
19.
Rapid detoxification of atrazine in naturally tolerant crops such as maize (Zea mays) and grain sorghum (Sorghum bicolor) results from glutathione S‐transferase (GST) activity. In previous research, two atrazine‐resistant waterhemp (Amaranthus tuberculatus) populations from Illinois, U.S.A. (designated ACR and MCR), displayed rapid formation of atrazine‐glutathione (GSH) conjugates, implicating elevated rates of metabolism as the resistance mechanism. Our main objective was to utilize protein purification combined with qualitative proteomics to investigate the hypothesis that enhanced atrazine detoxification, catalysed by distinct GSTs, confers resistance in ACR and MCR. Additionally, candidate AtuGST expression was analysed in an F2 population segregating for atrazine resistance. ACR and MCR showed higher specific activities towards atrazine in partially purified ammonium sulphate and GSH affinity‐purified fractions compared to an atrazine‐sensitive population (WCS). One‐dimensional electrophoresis of these fractions displayed an approximate 26‐kDa band, typical of GST subunits. Several phi‐ and tau‐class GSTs were identified by LC‐MS/MS from each population, based on peptide similarity with GSTs from Arabidopsis. Elevated constitutive expression of one phi‐class GST, named AtuGSTF2, correlated strongly with atrazine resistance in ACR and MCR and segregating F2 population. These results indicate that AtuGSTF2 may be linked to a metabolic mechanism that confers atrazine resistance in ACR and MCR.  相似文献   

20.
Enrichment cultures containing atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) at a concentration of 100 ppm (0.46 mM) as a sole nitrogen source were obtained from soils exposed to repeated spills of atrazine, alachlor, and metolachlor. Bacterial growth occurred concomitantly with formation of metabolites from atrazine and subsequent biosynthesis of protein. When ring-labeled [14C]atrazine was used, 80% or more of the s-triazine ring carbon atoms were liberated as 14CO2. Hydroxyatrazine may be an intermediate in the atrazine mineralization pathway. More than 200 pure cultures isolated from the enrichment cultures failed to utilize atrazine as a nitrogen source. Mixing pure cultures restored atrazine-mineralizing activity. Repeated transfer of the mixed cultures led to increased rates of atrazine metabolism. The rate of atrazine degradation, even at the elevated concentrations used, far exceeded the rates previously reported in soils, waters, and mixed and pure cultures of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号