首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
D Dedera  R L Gu    L Ratner 《Journal of virology》1992,66(2):1207-1209
The transmembrane (TM) protein of human immunodeficiency virus type 1 has been demonstrated to be involved in viral infectivity and syncytium formation. Two highly conserved cysteine residues in the extracellular region of the TM protein are shown to be essential for processing the 160-kDa envelope precursor into the active 120- and 41-kDa mature forms.  相似文献   

2.
The humoral immune response to human immunodeficiency virus type 1 (HIV-1) is often studied by using monomeric or denatured envelope proteins (Env). However, native HIV-1 Env complexes that maintain quaternary structure elicit immune responses that are qualitatively distinct from those seen with monomeric or denatured Env. To more accurately assess the levels and types of antibodies elicited by HIV-1 infection, we developed an antigen capture enzyme-linked immunosorbent assay using a soluble, oligomeric form of HIV-1IIIB Env (gp140) that contains gp120 and the gp41 ectodomain. The gp140, captured by various monoclonal antibodies (MAbs), retained its native oligomeric structure: it bound CD4 and was recognized by MAbs to conformational epitopes in gp120 and gp41, including oligomer-specific epitopes in gp41. We compared the reactivities of clade B and clade E serum samples to captured Env preparations and found that while both reacted equally well with oligomeric gp140, clade B seras reacted more strongly with monomeric gp120 than did clade E samples. However, these differences were minimized when gp120 was captured by a V3 loop MAb, which may lead to increased exposure of the CD4 binding site. We also measured the ability of serum samples to block binding of MAbs to epitopes in gp120 and gp41. Clade B serum samples consistently blocked binding of oligomer-dependent MAbs to gp41 and, to a slightly lesser extent, MAbs to the CD4 binding site in gp120. Clade E serum samples showed equivalent or greater blocking of oligomer-dependent gp41 antibodies and considerably less blocking of CD4-binding-site MAbs. Finally, we found that < 5% of the antibodies in clade B sera bound to epitopes present only in monomeric gp120, 30% bound to epitopes present in both monomeric gp120 and oligomeric gp140, and 70% bound to epitopes present in oligomeric gp140, which includes gp41. Thus, captured oligomeric Env closely reflects the antigenic characteristics of Env protein on the surface of virions and infected cells, retains highly conserved epitopes that are recognized by antibodies raised against different clades, and makes it possible to detect a much greater fraction of total anti-HIV-1 Env activity in sera than does native monomeric gp120.  相似文献   

3.
We investigated the ability of western equine encephalitis virus envelope glycoproteins (WEEV GP) to pseudotype lentiviral vectors. The titers of WEEV GP-pseudotyped human immunodeficiency virus type 1 (HIV) ranged as high as 8.0 × 104 IU/ml on permissive cells. Sera from WEEV-infected mice specifically neutralized these pseudotypes; cell transduction was also sensitive to changes in pH. The host range of the pseudotyped particles in vitro was somewhat limited, which is atypical for most alphaviruses. HIV vectors pseudotyped by WEEV GP may be a useful tool for characterizing WEEV cell binding and entry and screening for small-molecule inhibitors.  相似文献   

4.
Primate lentiviruses code for a protein that stimulates virus production. In human immunodeficiency virus type 1 (HIV-1), the activity is provided by the accessory protein, Vpu, while in HIV-2 and simian immunodeficiency virus it is a property of the envelope (Env) glycoprotein. Using a group of diverse retroviruses and cell types, we have confirmed the functional equivalence of the two proteins. However, despite these similarities, the two proteins have markedly different functional domains. While the Vpu activity is associated primarily with its membrane-spanning region, we have determined that the HIV-2 Env activity requires both the cytoplasmic tail and ectodomain of the protein, with the membrane-spanning domain being less important. Within the Env cytoplasmic tail, we further defined the necessary sequence as a membrane-proximal tyrosine-based motif. Providing the two Env regions separately as distinct CD8 chimeric proteins did not increase virus release. This suggests that the two domains must be either contained within a single protein or closely associated within a multiprotein oligomer, such as the Env trimer, in order to function. Finally, we observed that wild-type levels of incorporation of the HIV-2 Env into budding viruses were not required for this activity.  相似文献   

5.
Oligomerization of the human immunodeficiency virus type 1 envelope (env) glycoproteins is mediated by the ectodomain of the transmembrane glycoprotein gp41. We report that deletion of gp41 residues 550 to 561 resulted in gp41 sedimenting as a monomer in sucrose gradients, while the gp160 precursor sedimented as a mixture of monomers and oligomers. Deletion of the nearby residues 571 to 582 did not affect the oligomeric structure of gp41 or gp160, but deletion of both sequences resulted in monomeric gp41 and predominantly monomeric gp160. Deletion of residues 655 to 665, adjacent to the membrane-spanning sequence, partially dissociated the gp41 oligomer while not affecting the gp160 oligomeric structure. In contrast, deletion of residues 510 to 518 from the fusogenic hydrophobic N terminus of gp41 did not affect the env glycoprotein oligomeric structure. Even though the mutant gp160 and gp120 molecules were competent to bind CD4, the mutations impaired fusion function, gp41-gp120 association, and gp160 processing. Furthermore, deletion of residues 550 to 561 or 550 to 561 plus 571 to 582 modified the antigenic properties of the proximal residues 586 to 588 and the distal residues 634 to 664. Our results indicate that residues 550 to 561 are essential for maintaining the gp41 oligomeric structure but that this sequence and additional sequences contribute to the maintenance of gp160 oligomers. Residues 550 to 561 map to the N terminus of a putative amphipathic alpha-helix (residues 550 to 582), whereas residues 571 to 582 map to the C terminus of this sequence.  相似文献   

6.
We demonstrated that the leader sequence of the human immunodeficiency virus type 1 envelope functions as signal peptide (SP) despite low scoring in a prediction program. As expected for SP, the hydrophobic core (HC) is essential, and no other sequence could compensate for HC deletion. Contrary to other SPs, major substitutions in the HC, such as introduction of basic, polar, or alpha-helix-breaking residues, still allowed efficient translocation and glycosylation. Also, extensive deletions or substitutions of the charged residues at the N terminus had little if any inhibitory effect. This report, which is the first study of human immunodeficiency virus SP, describes the exceptional tolerance of this peptide to mutations.  相似文献   

7.
W J Syu  W R Lee  B Du  Q C Yu  M Essex    T H Lee 《Journal of virology》1991,65(11):6349-6352
All animal retroviruses whose nucleotide sequences have been determined contain two or three closely spaced cysteine residues in the extracellular domain of the env-encoded transmembrane protein. Using human immunodeficiency virus type 1 gp41 as a working model, the functional significance of these highly conserved cysteines was investigated. We report here that substituting the two conserved cysteine residues in this domain of gp41 with glycine residues resulted in the loss of viral infectivity, which could be attributed to severe impairment in the processing of gp160 precursor to gp120.  相似文献   

8.
Four chimeric human immunodeficiency virus type 1 (HIV-1) env genes were constructed which encoded the extracellular domain of either the wild-type or a cleavage-defective HIV-1 envelope glycoprotein (gp160) fused at one of two different positions in env to a C-terminal glycosyl-phosphatidylinositol (GPI) attachment signal from the mouse Thy-1.1 glycoprotein. All four of the constructs encoded glycoproteins that were efficiently expressed when Rev was supplied in trans, and the two cleavable forms were processed normally to gp120 and a chimeric "gp41." The chimeric glycoproteins, in contrast to the wild-type glycoprotein, could be cleaved from the surface of transfected cells by treatment with phosphatidylinositol-specific phospholipase C, indicating that they were anchored in the plasma membrane by a GPI moiety. These GPI-anchored glycoproteins were transported intracellularly at a rate only slightly lower than that of the full-length HIV-1 glycoprotein and were present on the cell surface in equivalent amounts. Nevertheless, all four glycoproteins were defective in mediating both cell-cell and virus-cell fusion as determined by syncytium formation in COS-1-HeLa-T4 cell mixtures and trans complementation of an env-defective HIV-1 genome.  相似文献   

9.
Recombinant native human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins gp160 and gp120 (residues 1 to 511) expressed in insect cells quantitatively adsorbed the group-specific neutralizing antibodies found in human sera. However, these antibodies were not adsorbed by envelope fragment 1 to 471 or 472 to 857 or by both fragments sequentially, even though together they add up to the full-length gp160 sequence. A hybrid envelope glycoprotein was constructed with residues 342 to 511 of the HIV-1 sequence and residues 1 to 399 of the simian immunodeficiency virus type 1 sequence to vary the HIV-1 sequence while preserving its conformation. This hybrid glycoprotein quantitatively adsorbed human neutralizing antibodies, while native simian immunodeficiency virus type 1 envelope glycoprotein did not. These results identify a new neutralizing epitope that depends on conformation and maps to residues 342 to 511 of gp120. It overlaps the extended CD4-binding site but is distinct from the V3 loop described previously (K. Javaherian et al., Proc. Natl. Acad. Sci. USA 86:6768-6772, 1989; J. R. Rusche et al., Proc. Natl. Acad. Sci. USA 85:3198-3202). Since it is conserved among diverse HIV-1 isolates, this new epitope may be a suitable target for future vaccine development.  相似文献   

10.
In virus-infected cells, the envelope glycoprotein (Env) precursor, gp160, of human immunodeficiency virus type 1 is cleaved by cellular proteases into a fusion-competent gp120-gp41 heterodimer in which the two subunits are noncovalently associated. However, cleavage can be inefficient when recombinant Env is expressed at high levels, either as a full-length gp160 or as a soluble gp140 truncated immediately N-terminal to the transmembrane domain. We have explored several methods for obtaining fully cleaved Env for use as a vaccine antigen. We tested whether purified Env could be enzymatically digested with purified protease in vitro. Plasmin efficiently cleaved the Env precursor but also cut at a second site in gp120, most probably the V3 loop. In contrast, a soluble form of furin was specific for the gp120-gp41 cleavage site but cleaved inefficiently. Coexpression of Env with the full-length or soluble form of furin enhanced Env cleavage but also reduced Env expression. When the Env cleavage site (REKR) was mutated in order to see if its use by cellular proteases could be enhanced, several mutants were found to be processed more efficiently than the wild-type protein. The optimal cleavage site sequences were RRRRRR, RRRRKR, and RRRKKR. These mutations did not significantly alter the capacity of the Env protein to mediate fusion, so they have not radically perturbed Env structure. Furthermore, unlike that of wild-type Env, expression of the cleavage site mutants was not significantly reduced by furin coexpression. Coexpression of Env cleavage site mutants and furin is therefore a useful method for obtaining high-level expression of processed Env.  相似文献   

11.
Deletions of the major variable regions (V1/V2, V3, and V4) of the human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein were created to study the role of these regions in function and antigenicity. Deletion of the V4 region disrupted processing of the envelope glycoprotein precursor. In contrast, the deletion of the V1/V2 and/or V3 regions yielded processed exterior envelope glycoproteins that retained the ability to interact with the gp41 transmembrane glycoprotein and the CD4 receptor. Shedding of the gp120 exterior glycoprotein by soluble CD4 was observed for the mutant with the V3 deletion but did not occur for the V1/V2-deleted mutant. None of the deletion mutants formed syncytia or supported virus entry. Importantly, the affinity of neutralizing antibodies directed against the CD4-binding region for the multimeric envelope glycoprotein complex was increased dramatically by the removal of both the V1/V2 and V3 structures. These results indicate that, in addition to playing essential roles in the induction of membrane fusion, the major variable regions mask conserved neutralization epitopes of the HIV-1 gp120 glycoprotein from antibodies. These results explain the temporal pattern associated with generation of HIV-1-neutralizing antibodies following infection and suggest stratagems for eliciting improved immune responses to conserved gp120 epitopes.  相似文献   

12.
A series of deletions was introduced into the CA domain of the human immunodeficiency virus type 1 Gag polyprotein to examine its role in virus particle and core formation. The mutations resulted in two phenotypes, indicating the existence of two functionally distinct regions within the CA domain. Deletions within a conserved stretch of 20 amino acids referred to as the major homology region (MHR) and deletions C terminal to this region blocked virus replication and significantly reduced the ability to form viral particles. Deletions N terminal to the MHR also prevented virus replication, but the mutants retained the ability to assemble and release viral particles with the same efficiency as the wild-type virus. The mutant particles contained circular rather than cone-shaped cores, and while they were of a density similar to that of wild-type particles, they were more heterogeneous in size. These results indicate that CA domain sequences N terminal to the MHR are essential for the morphogenesis of the mature cone-shaped core.  相似文献   

13.
Here, we confirm and extend our previous findings on human immunodeficiency virus type 1 (HIV-1) envelope glycoproteinN-acetylglucosaminyl binding properties. We show the occurrence of saturable, temperature, pH, and calcium dependent carbohydrate-specific interactions between recombinant precursor gp160 (rgp160) and two affinity matrices:d-mannose-divinylsulfone-agarose, and natural glycoprotein, fetuin, also coupled to agarose. Binding of rgp160 to the matrices was inhibited by soluble mannosyl derivatives, -d-Man17-BSA and mannan, by -d-GlcNAc47-BSA and by glycopeptides from Pronase-treated porcine thyroglobulin, which produces oligomannose and complex N-linked glycans. Glycopeptides from Endoglycosidase H-treated thyroglobulin partially inhibited rgp160 binding, as did the asialo-agalacto-tetraantennary precursor oligosaccharide of human 1-acid glycoprotein for binding to fetuin-agarose. -d-Glucan and -d-Gal17-BSA had no or only limited effect. Also, surface unit rgp120 specifically interacted with fetuin-agarose and soluble fetuin, but in the latter case with a twofold reduced affinity relative to rgp160. After affinity chromatography, rgp160 was specifically retained by the two matrices and eluted by mannan in both cases, while rgp120 was not retained by fetuin-agarose but only eluted as a significantly retarded peak, which confirms its specific but weak interaction. Thus, rgp160 interacts with both oligomannose type, and the mannosyl core of complex type N-linked glycans, and its gp120 region plays a role in this interaction. Because fetuin and asialofetuin inhibit to nearly the same extent, the binding of rgp160 or rgp120 to fetuin-agarose, interaction with sialic acid or -d-galactosyl structures of complex N- or O-linked glycans can be ruled out. Specific rgp160 and rgp120 binding to ap-aminophenyl--d-GlcNAc-agarose matrix, which was inhibited by -d-GlcNAc47-BSA and by fetuin, confirms that HIV-1 envelope glycoproteins can also specifically interact with theN-acetylglucosaminyl core of oligosaccharide structures.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) infection encounters an early block in the cells of New World monkeys because the CD4 receptor does not efficiently support HIV-1 entry. We adapted HIV-1(NL4-3) and HIV-1(KB9), two HIV-1 variants with different envelope glycoproteins, to replicate efficiently in cells expressing the CD4 and CXCR4 proteins of the common marmoset, a New World monkey. The HIV-1(NL4-3) adaptation involves three gp120 changes that result in a specific increase in affinity for the marmoset CD4 glycoprotein. The already high affinity of the HIV-1(KB9) envelope glycoproteins for marmoset CD4 did not significantly change as a result of the adaptation. Instead, changes in the gp120 variable loops and gp41 ectodomain resulted in improved replication in cells expressing the marmoset receptors. HIV-1(KB9) became relatively sensitive to neutralization by soluble CD4 and antibodies as a result of the adaptation. These results demonstrate the distinct mechanistic pathways by which the HIV-1 envelope glycoproteins can adapt to less-than-optimal CD4 molecules and provide HIV-1 variants that can overcome some of the early blocks in New World monkey cells.  相似文献   

15.
Genetic analysis of human immunodeficiency virus type 1 (HIV-1) from cases of mother-to-infant transmission were analyzed in an effort to provide insights into the viral selection that may occur during transmission, as well as the timing and source of transmitted viruses. HIV-1 env genes obtained from seven mothers and their perinatally infected infants in Sweden were studied. Five envelope sequence clades (A to E) were found to be represented. We used a heteroduplex tracking assay (HTA) to assess the genetic relatedness between early viral isolates from the infants and serial maternal virus populations taken during pregnancy and at delivery. HTA findings were used to select for DNA sequence analysis maternal virus populations that were either closely or more distantly related to the infant virus. In each case, nucleotide sequence analysis confirmed the genetic relationships inferred by the HTA. Only maternal peripheral blood was sampled, and large sets of maternal specimens throughout pregnancy were generally not available. However, no consistent correlation was found to support the hypothesis that infant viruses should match blood-derived maternal virus genotypes found early in pregnancy if infants were found to be infected at birth or, conversely, that infant viruses should match blood-derived maternal virus genotypes found at delivery if infants were found to be infected only some time later.  相似文献   

16.
The human immunodeficiency virus type 1 initially assembles and buds as an immature particle that is organized by the viral Gag polyprotein. Gag is then proteolyzed to produce the smaller capsid protein CA, which forms the central conical capsid that surrounds the RNA genome in the mature, infectious virus. To define CA surfaces that function at different stages of the viral life cycle, a total of 48 different alanine-scanning surface mutations in CA were tested for their effects on Gag protein expression, processing, particle production and morphology, capsid assembly, and infectivity. The 27 detrimental mutations fall into three classes: 13 mutations significantly diminished or altered particle production, 9 mutations failed to assemble normal capsids, and 5 mutations supported normal viral assembly but were nevertheless reduced more than 20-fold in infectivity. The locations of the assembly-defective mutations implicate three different CA surfaces in immature particle assembly: one surface encompasses helices 4 to 6 in the CA N-terminal domain (NTD), a second surrounds the crystallographically defined CA dimer interface in the C-terminal domain (CTD), and a third surrounds the loop preceding helix 8 at the base of the CTD. Mature capsid formation required a distinct surface encompassing helices 1 to 3 in the NTD, in good agreement with a recent structural model for the viral capsid. Finally, the identification of replication-defective mutants with normal viral assembly phenotypes indicates that CA also performs important nonstructural functions at early stages of the viral life cycle.  相似文献   

17.
A human host offers a variety of microenvironments to the infecting human immunodeficiency virus type 1 (HIV-1), resulting in various selective pressures, most of them directed against the envelope (env) gene. Therefore, it seems evident that the replicative capacity of the virus is largely related to viral entry. In this study we have used growth competition experiments and TaqMan real-time PCR detection to measure the fitness of subtype B HIV-1 primary isolates and autologous env-recombinant viruses in order to analyze the contribution of wild-type env sequences to overall HIV-1 fitness. A significant correlation was observed between fitness values obtained for wild-type HIV-1 isolates and those for the corresponding env-recombinant viruses (r = 0.93; P = 0.002). Our results suggest that the env gene, which is linked to a myriad of viral characteristics (e.g., entry into the host cell, transmission, coreceptor usage, and tropism), plays a major role in fitness of wild-type HIV-1. In addition, this new recombinant assay may be useful for measuring the contribution of HIV-1 env to fitness in viruses resistant to novel antiretroviral entry inhibitors.  相似文献   

18.
The relevance of simian/human immunodeficiency virus (SHIV) infection of macaques to HIV-1 infection in humans depends on how closely SHIVs mimic HIV-1 transmission, pathogenesis, and diversity. Circulating HIV-1 strains are predominantly subtypes C and A and overwhelmingly require CCR5 for entry, yet most SHIVs incorporate CXCR4-using subtype B envelopes (Envs). While pathogenic subtype C-based SHIVs have been constructed, the subtype A-based SHIVs (SHIV-As) constructed to date have been unable to replicate in macaque cells. To understand the barriers to SHIV-A replication in macaque cells, HIVA(Q23)/SIV(vif) was constructed by engineering a CCR5-tropic subtype A provirus to express SIV vif, which counters the macaque APOBEC3G restriction. HIVA(Q23)/SIV(vif) replicated poorly in pig-tailed macaque (Ptm) lymphocytes, but viruses were adapted to Ptm lymphocytes. Two independent mutations in gp120, G312V (V3 loop) and A204E (C2 region), were identified that increased peak virus levels by >100-fold. Introduction of G312V and A204E to multiple subtype A Envs and substitution of G312 and A204 with other residues increased entry into Ptm cells by 10- to 100-fold. G312V and A204E Env variants continued to require CCR5 for entry but were up to 50- and 200-fold more sensitive to neutralization by IgG1b12 and soluble CD4 and had a 5- to 50-fold increase in their ability to utilize Ptm CD4 compared to their wild-type counterparts. These findings identify the inefficient use of Ptm CD4 as an unappreciated restriction to subtype A HIV-1 replication in Ptm cells and reveal amino acid changes to gp120 that can overcome this barrier.  相似文献   

19.
Peut V  Kent SJ 《Journal of virology》2007,81(23):13125-13134
Human immunodeficiency virus (HIV)-specific CD8 T lymphocytes are important for the control of viremia, but the relative utility of responses to the various HIV proteins is controversial. Immune responses that force escape mutations that exact a significant fitness cost from the mutating virus would help slow progression to AIDS. The HIV envelope (Env) protein is subject to both humoral and cellular immune responses, suggesting that multiple rounds of mutation are needed to facilitate viral escape. The Gag protein, however, has recently been shown to elicit a more effective CD8 T-cell immune response in humans. We studied 30 pigtail macaques for their CD8 T-lymphocyte responses to HIV-1 Env and simian immunodeficiency virus (SIV) Gag following prime/boost vaccination and intrarectal challenge with simian-human immunodeficiency virus SHIVmn229. Eight CD8 Env-specific T-cell epitopes were identified and mapped in 10 animals. Animals that generated Env-specific CD8 T-cell responses had equivalent viral loads and only a modest advantage in retention of peripheral CD4 T lymphocytes compared to those animals without responses to Env. This contrasts with animals that generated CD8 T-cell responses to SIV Gag in the same trial, demonstrating superior control of viral load and a larger advantage in retention of peripheral CD4 T cells than Gag nonresponders. Mutational escape was common in Env but, in contrast to mutations in Gag, did not result in the rapid emergence of dominant escape motifs, suggesting modest selective pressure from Env-specific T cells. These results suggest that Env may have limited utility as a CD8 T-cell immunogen.  相似文献   

20.
The HIV-1 envelope glycoprotein (Env) spike is challenging to study at the molecular level, due in part to its genetic variability, structural heterogeneity and lability. However, the extent of lability in Env function, particularly for primary isolates across clades, has not been explored. Here, we probe stability of function for variant Envs of a range of isolates from chronic and acute infection, and from clades A, B and C, all on a constant virus backbone. Stability is elucidated in terms of the sensitivity of isolate infectivity to destabilizing conditions. A heat-gradient assay was used to determine T90 values, the temperature at which HIV-1 infectivity is decreased by 90% in 1 h, which ranged between ∼40 to 49°C (n = 34). For select Envs (n = 10), the half-lives of infectivity decay at 37°C were also determined and these correlated significantly with the T90 (p = 0.029), though two ‘outliers’ were identified. Specificity in functional Env stability was also evident. For example, Env variant HIV-1ADA was found to be labile to heat, 37°C decay, and guanidinium hydrochloride but not to urea or extremes of pH, when compared to its thermostable counterpart, HIV-1JR-CSF. Blue native PAGE analyses revealed that Env-dependent viral inactivation preceded complete dissociation of Env trimers. The viral membrane and membrane-proximal external region (MPER) of gp41 were also shown to be important for maintaining trimer stability at physiological temperature. Overall, our results indicate that primary HIV-1 Envs can have diverse sensitivities to functional inactivation in vitro, including at physiological temperature, and suggest that parameters of functional Env stability may be helpful in the study and optimization of native Env mimetics and vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号